Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-22T17:36:02.302Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 January 2012

Teiko Heinosaari
Affiliation:
University of Turku, Finland
Mário Ziman
Affiliation:
Slovak Academy of Sciences, Slovakia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Mathematical Language of Quantum Theory
From Uncertainty to Entanglement
, pp. 318 - 324
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] A., Acin. Statistical distinguishability between unitary operations. Phys. Rev. Lett., 87: 177 901, 2001.Google Scholar
[2] S.T., Ali, J.-P., Antoine and J.-P., Gazeau. Coherent states, Wavelets and Their Generalizations. Springer-Verlag, New York, 2000.Google Scholar
[3] S.T., Ali, C., Carmeli, T., Heinosaari and A., Toigo. Commutative povms and fuzzy observables. Found. Phys., 39: 593–612, 2009.Google Scholar
[4] S.T., Ali and G.G., Emch. Fuzzy observables in quantum mechanics. J. Math, Phys. 15: 176–182, 1974Google Scholar
[5] A., Ambainis, M., Mosca, A., Tapp and R., de Wolf. Private quantum channels. In FOCS, Proc. 41st Annual Symp. on Foundations of Computer Science, pp. 547–553. IEEE Computer Society, 2000.
[6] H., Araki and M.M., Yanase. Measurement of quantum mechanical operators. Phys. Rev. 2, 120: 622–626, 1960.Google Scholar
[7] A., Arias, A., Gheondea and S., Gudder. Fixed points of quantum operations. J. Math. Phys., 43: 5872–5881, 2002.Google Scholar
[8] K., Audenaert and S., Scheel. On random unitary channels. New J. Phys., 10: 023 011, 2008.Google Scholar
[9] A., Barenco, C.H., Bennett, R., Cleve et al. Elementary gates for quantum computation. Phys. Rev. A, 52: 3457–3467, 1995.Google Scholar
[10] V., Bargmann. Note on Wigner's theorem on symmetry operations. J. Math. Phys., 5: 862–868, 1964.Google Scholar
[11] J.S., Bell. On the Einstein Podolsky Rosen paradox. Physics, 1: 195–200, 1964.Google Scholar
[12] J.S., Bell. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys., 38: 447–452, 1966.Google Scholar
[13] E., Beltrametti, G., Cassinelli and P., Lahti. Unitary measurements of discrete quantities in quantum mechanics. J. Math. Phys., 31: 91–98, 1990.Google Scholar
[14] I., Bengtsson and K., Zyczkowski. Geometry of quantum states. Cambridge University Press, 2006.Google Scholar
[15] C.H., Bennett. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett., 68: 3121–3124, 1992.Google Scholar
[16] C.H., Bennett and G., Brassard. Quantum cryptography: public-key distribution and coin-tossing. In Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York, 1984.
[17] C.H., Bennett and S.J., Wiesner. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett., 69: 2881–2884, 1992.Google Scholar
[18] C.H., Bennett, G., Brassard, C., Crepeau, R., Jozsa, A., Peres, and W.K., Wootters. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett., 70: 1895–1899, 1993.Google Scholar
[19] C.H., Bennett, D.P., DiVincenzo, C.A., Fuchs, et al. Quantum nonlocality without entanglement. Phys. Rev. A, 59: 1070–1091, 1999.Google Scholar
[20] C.H., Bennett, D.P., DiVincenzo, T., Mor, P.W., Shor, J.A., Smolin, and B.M., Terhal. Unextendible product bases and bound entanglement. Phys. Rev. Lett., 82: 5385, 1999.Google Scholar
[21] J.A., Bergou, U., Herzogand M., Hillery. Discrimination of quantum states. In Quantum State Estimation, Vol. 649 of Lecture Notes in Physics, pp. 417–465. Springer, Berlin, 2004.
[22] P., Busch. Unsharp reality and joint measurements for spin observables. Phys. Rev. D, 33: 2253–2261, 1986.Google Scholar
[23] P., Busch. Quantum states and generalized observables: a simple proof of Gleason"s theorem. Phys. Rev. Lett., 91: 120403/1–4, 2003.Google Scholar
[24] P., Busch. The role of entanglement in quantum measurement and information processing. Int. J. Theor. Phys., 42: 937–941, 2003.Google Scholar
[25] P., Busch. ‘No information without disturbance’: quantum limitations of measurement. In J. Christian and W. Myrvold, eds., Quantum reality, relativistic causality, and closing the epistemic circle. Springer-Verlag, Berlin, 2008.Google Scholar
[26] P., Busch and P., Lahti. The determination of the past and the future of a physical system in quantum mechanics. Found. Phys., 19: 633–678, 1989.Google Scholar
[27] P., Busch and P, Lahti. Some remarks on unsharp quantum measurements, quantum nondemolition, and all that. Ann. Physik 7, 47: 369–382, 1990.
[28] P., Busch and P., Lahti. The complementarity of quantum observables: Theory and experiments. Riv. Nuovo Cimento, 18: 1–27, 1995.Google Scholar
[29] P., Busch and H.-J., Schmidt. Coexistence of qubit effects. Quantum Inf. Process., 9: 143,–169, 2010.Google Scholar
[30] P., Busch and C., Shilladay. Complementarity and uncertainty in Mach–Zehnder interferometry and beyond. Phys. Rep., 435: 1–31, 2006.Google Scholar
[31] P., Busch and J., Singh. Lüders theorem for unsharp quantum measurements. Phys. Lett. A, 249: 10–12, 1998.Google Scholar
[32] P., Busch, G., Cassinelli and P., Lahti. Probability structures for quantum state spaces. Rev. Math. Phys., 7: 1105–1121, 1995.Google Scholar
[33] P., Busch, M., Grabowski and P., Lahti.Repeatable measurements in quantum theory:their role and feasibility. Found. Phys., 25: 1239–1266, 1995.Google Scholar
[34] P., Busch, M., Grabowski and P., Lahti. Operational Quantum Physics. Springer-Verlag, Berlin, 1997; second, corrected, printing.Google Scholar
[35] P., Busch, P., Lahti and P., Mittelstaedt. The Quantum Theory of Measurement. Springer-Verlag, Berlin, second edition, 1996.Google Scholar
[36] A., Aspuru-Guzik. C.A., Rodríguez Rosario and K., Modi. Linearassignment maps for correlated system–environment states. Phys. Rev. A, 81: 012 313, 2010.Google Scholar
[37] C., Carmeli, T., Heinonen and A., Toigo. Intrinsic unsharpness and approximate repeatability of quantum measurements. J. Phys. A, 40: 1303–1323, 2007.Google Scholar
[38] G., Cassinelli, E., De Vito, P., Lahti and A., Levrero. The Theory of Symmetry Actions in Quantum Mechanics. Springer, Berlin, 2004.Google Scholar
[39] G., Cassinelli, E., De Vito and A., Levrero. On the decompositions of a quantum state. J. Math. Anal. Appl., 210: 472–483, 1997.Google Scholar
[40] C.M., Caves, C. A., Fuchs and R., Schack. Unknown quantum states: the quantum de Finetti representation. J. Math. Phys., 43: 4537–4559, 2002.Google Scholar
[41] N.J., Cerf and J., Fiurášek. Optimal quantum cloning – a review. In Progress in Optics, Vol. 49. Elsevier, 2006.Google Scholar
[42] A., Chefles. Quantum state discrimination. Contemp. Physics, 41: 401–424, 2000.Google Scholar
[43] M., Choi. Completely positive linear maps on complex matrices. Linear Alg. Appl., 10: 285–290, 1975.Google Scholar
[44] J.F., Clauser, M.A., Horne, A., Shimony and R.A., Holt. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett., 23: 880–884, 1969.Google Scholar
[45] J.B., Conway. A Course in Functional Analysis, second edition. Springer, 1990.Google Scholar
[46] J.B., Conway. A Course in Operator Theory. American Mathematical Society, Providence, Rhode Island, 2000.Google Scholar
[47] R., Cooke, M., Keane and W., Moran. An elementary proof of Gleason"s theorem. Math. Proc. Cambridge Philos. Soc., 98: 117–128, 1985.Google Scholar
[48] J., Corbett. The Pauli problem, state reconstruction and quantum-real numbers. Rep. Math. Phys., 57: 53–68, 2006.Google Scholar
[49] J., Corbett and C., Hurst. Are wave functions uniquely determined by their position and momentum distributions?J. Austral. Math. Soc. Ser. B, 20: 182–201, 1978.Google Scholar
[50] G.M., D'Ariano, P., Lo Presti and P., Perinotti. Classical randomness in quantum measurements. J. Phys. A, 38: 5979–5991, 2005.Google Scholar
[51] E.B., Davies. Quantum Theory of Open Systems. Academic Press,, London, 1976.Google Scholar
[52] E.B., Davies and J.T., Lewis. An operational approach to quantum probability. Comm. Math. Phys., 17: 239–260, 1970.Google Scholar
[53] W.M., de Muynck. Foundations of Quantum Mechanics, An Empiricist Approach. Kluwer, Dordrecht, 2002.
[54] P.A.M., Dirac. The Principles of Quantum Mechanics. Oxford University Press, 1930.Google Scholar
[55] W., Dür, G., Vidal and J.I., Cirac. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 62: 062 314, 2000.Google Scholar
[56] T., Durt, B.-G., Englert, I., Bengtsson and K., Zyczkowski. On mutually unbiased bases. Int. J. Quant. Inf., 8: 535–640, 2010.Google Scholar
[57] A., Dvurečenskij. Gleason"s Theorem and Its Applications. Kluwer, Dordrecht, 1993.
[58] A., Einstein, B., Podolsky and N., Rosen. Can quantum-mechanical description of physical reality be considered complete?Phys. Rev., 47: 777–780, 1935.Google Scholar
[59] Y., Feng, R., Duan and M., Ying. Unambiguous discrimination between mixed quantum states. Phys. Rev. A, 70: 012 308, 2004.Google Scholar
[60] G.B., Folland. A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton, Florida, 1995.Google Scholar
[61] G.B., Folland. Real Analysis, second edition. John Wiley & Sons, New York, 1999.Google Scholar
[62] A., Friedman. Foundations of Modern Analysis. Dover, New York<, 1982. Reprint of the 1970 original.Google Scholar
[63] C., Friedman. Some remarks on Pauli data in quantum mechanics. J. Austral. Math. Soc. Ser. B, 30: 298–303, 1989.Google Scholar
[64] C., Gerry and P., Knight. Introductory Quantum Optics. Cambridge University Press, 2005.Google Scholar
[65] N., Gisin, G., Ribordy, W., Tittel and H., Zbinden. Quantum cryptography. Rev. Mod. Phys., 74: 145–195, 2002.Google Scholar
[66] A.M., Gleason. Measures on the closed subspaces of a Hilbert space. J. Math. Mech., 6: 885–893, 1957.Google Scholar
[67] D.M., Greenberger, M.A., Horne and A., Zeilinger. Going beyond Bell"s theorem. In M. Kafatos, ed., Bell"s Theorem, Quantum Theory, and Conceptions of the Universe, pp. 69–72. Kluwer Academic Publishers, Dordrecht, 1989.Google Scholar
[68] S., Gudder. Lattice properties of quantum effects. J. Math. Phys., 37: 2637, 1996.Google Scholar
[69] S., Gudder and R., Greechie. Effect algebra counterexamples. Math. Slovaca, 46: 317–325, 1996.Google Scholar
[70] R., Haag and D., Kastler. An algebraic approach to quantum field theory. J. Math. Phys., 5: 848–861, 1964.Google Scholar
[71] N., Hadjisavvas. Properties of mixtures on non-orthogonal states. Lett. Math. Phys., 5: 327–332, 1981.Google Scholar
[72] M., Hayashi. Quantum Information. Springer-Verlag, Berlin, 2006. Translated from the 2003 Japanese original.Google Scholar
[73] T., Heinonen. Optimal measurements in quantum mechanics. Phys. Lett. A, 346: 77–86, 2005.Google Scholar
[74] T., Heinosaari and M.M., Wolf. Nondisturbing quantum measurements. J. Math. Phys., 51: 092201, 2010.Google Scholar
[75] C.W., Helstrom. Quantum Detection and Estimation Theory. Academic Pressm New York, 1976.Google Scholar
[76] A.S., Holevo. Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam, 1982.Google Scholar
[77] M., Horodecki, P., Horodecki and R., Horodecki. Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A, 223: 1–8, 1996.Google Scholar
[78] M., Horodecki, P.W., Shor and M.B., Ruskai. Entanglement breaking channels. Rev. Math. Phys., 15: 629–641, 2003.Google Scholar
[79] P., Horodecki. Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A, 232, 1997.Google Scholar
[80] R., Horodecki, P., Horodecki, M., Horodecki and K., Horodecki. Quantum entanglement. Rev. Mod. Phys. 81: 865–942, 209.
[81] L.P., Hughston, R., Jozsa and W.K., Wootters. A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A, 183: 14–18, 1993.Google Scholar
[82] I.D., Ivanović. Geometrical description of quantal state determination. J. Phys. A: Math. Gen., 14: 3241–3245, 1981.Google Scholar
[83] I.D., Ivanović. How to differentiate between nonorthogonal states. Phys. Lett. A, 123: 257–259, 1987.Google Scholar
[84] E.T., Jaynes. Information theory and statistical mechanics. II. Phys. Rev., 108: 171–190, 1957.Google Scholar
[85] A., Jenčová and S., Pulmannová. Characterizations of commutative POV measures. Found. Phys., 39: 613–624, 2009.Google Scholar
[86] D., Jonathan and M.B., Plenio. Entanglement-assisted local manipulation of pure quantum states. Phys. Rev. Lett., 83: 3566–3569, 1999.Google Scholar
[87] Y., Kinoshita, R., Namiki, T., Yamamoto, M., Koashi and N., Imoto. Selective entanglement breaking. Phys. Rev. A, 75: 032 307, 2007.Google Scholar
[88] K., Kraus. General state changes in quantum theory. Ann. Physics, 64: 311–335, 1971.Google Scholar
[89] K., Kraus. States, Effects, and Operations. Springer-Verlag, Berlin, 1983.Google Scholar
[90] S., Kullback and R.A., Leibler. On information and sufficiency. Ann. Math. Statistics, 22: 79–86, 1951.Google Scholar
[91] P.J., Lahti and M., Maczynski. Partial order of quantum effects. J. Math. Phys., 36: 1673–1680, 1995.Google Scholar
[92] L.J., Landau and R.F., Streater. On Birkhoff"s theorem for doubly stochastic completely positive maps of matrix algebras. Linear Algebra Appl., 193: 107–127, 1993.Google Scholar
[93] G., Lindblad. Completely positive maps and entropy inequalities. Comm. Math. Phys., 40: 147–151, 1975.Google Scholar
[94] L., Loveridge and P., Busch. ‘Measurement of quantum mechanical operators’ revisited. Eur. Phys. J. D, 2011.Google Scholar
[95] G., Lüders. Über die Zustandsänderung durch den Messprozess. Ann. Physik, 6 8: 322–328, 1951.Google Scholar
[96] G., Ludwig. Foundations of Quantum Mechanics I. Springer-Verlag, New York, 1983.Google Scholar
[97] D., Mayers. Unconditional security in quantum cryptography. J. Assoc. Comp. Mach., 48: 351, 2001.Google Scholar
[98] C.B., Mendl and M.M., Wolf. Unital quantum channels – convex structure and revivals of Birkhoff"s theorem. Comm. Math. Phys., 289: 1057–1086, 2009.Google Scholar
[99] D.N., Mermin. Quantum Computer Science. Cambridge University Press, 2007.Google Scholar
[100] M., Mičuda, M., Ježek, M., Dušek and J., Fiurášek. Experimental realization of programmable quantum gate. Phys. Rev. A, 78: 062 311, 2008.Google Scholar
[101] L., Molnár. Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Vol. 1895 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2007.Google Scholar
[102] M.A., Nielsen. Conditions for a class of entanglement transformations. Phys. Rev. Lett., 83: 436–439, 1999.Google Scholar
[103] M.A., Nielsen and I.L., Chuang. Programmable quantum gate arrays. Phys. Rev. Lett., 79: 321–324, 1997.Google Scholar
[104] M.A., Nielsen and I.L., Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.Google Scholar
[105] M., Ohya and D., Petz. Quantum Entropy and Its Use. Springer-Verlag, Berlin. Second, corrected printing, 2004.
[106] M., Ozawa. Conditional expectation and repeated measurements of continuous quantum observables. In Probability Theory and Mathematical Statistics Tbilisi, 1982, Vol. 1021 of Lecture Notes in Mathematics, pp. 518–525. Springer, Berlin, 1983.Google Scholar
[107] M., Ozawa. Quantum measuring processes of continuous observables. J. Math. Phys., 25: 79–87, 1984.Google Scholar
[108] M., Ozawa. Conditional probability and a posteriori states in quantum mechanics. Publ. RIMS, Kyoto Univ., 21: 279–295, 1985.Google Scholar
[109] M., Ozawa. Operations, disturbance, and simultaneous measurability. Phys. Rev. A, 63: 032 109, 2001.Google Scholar
[110] M., Paris and J., Řeháček, eds. Quantum State Estimation, Vol. 649 of Lecture Notes in Physics. Springer-Verlag, Berlin, 2004.Google Scholar
[111] K.R., Parthasarathy. Extremal decision rules in quantum hypothesis testing. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 24: 557–568, 1999.Google Scholar
[112] V., Paulsen. Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge, 2003.Google Scholar
[113] G., Pedersen. Analysis Now. Springer-Verlag, New York, 1989.Google Scholar
[114] J.-P., Pellonpää. Complete characterization of extreme quantum observables in infinite dimensions. J. Phys. A: Math. Theor., 44: 085 304, 2011.Google Scholar
[115] A., Peres. Separability criterion for density matrices. Phys. Rev. Lett., 77: 1413– 1415, 1996.Google Scholar
[116] D., Petz. Quantum Information Theory and Quantum Statistics. Springer, Berlin, 2008.Google Scholar
[117] D., Petz. Algebraic complementarity in quantum theory. J. Math. Phys., 51: 015 215, 2010.Google Scholar
[118] M.B., Plenio and S., Virmani. An introduction to entanglement measures. Quant. Inf. Comp., 7: 1, 2007.Google Scholar
[119] E., Prugovečki. Information-theoretical aspects of quantum measurements. Int. J. Theor. Phys., 16: 321–331, 1977.Google Scholar
[120] M., Raginsky. Strictly contractive quantum channels and physically realizable quantum computers. Phys. Rev. A, 65: 032 306, 2002.Google Scholar
[121] M., Reed and B., Simon. Methods of Modern Mathematical Physics, Vol. I: Functional Analysis, revised and enlarged ed. Academic Press, London, 1980.Google Scholar
[122] W., Rudin. Real and Complex Analysis, third ed. McGraw-Hill, New York, 1987.Google Scholar
[123] W., Rudin. Functional Analysis, second ed., McGraw-Hill, New York, 1991.Google Scholar
[124] M.B., Ruskai, S., Szarek and E., Werner. An analysis of completely positive racepreserving maps on M2. Linear Algebra Appl., 347: 1593–187, 2002.Google Scholar
[125] B., Russo and H.A., Dye. A note on unitary operators in C?-algebras. Duke Math. J., 33: 413–416, 1966.Google Scholar
[126] V., Scarani, S., Iblisdir, N., Gisin and A., Acin. Quantum cloning. Rev. Mod. Phys., 77: 1225–1256, 2005.Google Scholar
[127] E., Schrödinger. Discussion of probability relations between separated systems. Math. Proc. Camb. Phil. Soc., 31: 555–563, 1935.Google Scholar
[128] A.J., Scott and M., Grassl. Symmetric informationally complete positive-operatorvalued measures: a new computer study. J. Math. Phys., 51: 042 203, 2010.Google Scholar
[129] P., Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 26: 1484–1509, 1997.Google Scholar
[130] P.W., Shor and J., Preskill. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett., 85: 441–444, 2000.Google Scholar
[131] M., Singer and W., Stulpe. Phase-space representations of general statistical physical theories. J. Math. Phys., 33: 131–142, 1992.Google Scholar
[132] P., Stano, D., Reitzner and T., Heinosaari. Coexistence of qubit effects. Phys. Rev. A, 78: 012 315, 2008.Google Scholar
[133] W.F., Stinespring. Positive functions on C?-algebras. Proc. Amer. Math. Soc., 6: 211–216, 1955.Google Scholar
[134] E., Størmer. Positive linear maps of operator algebras. Acta Math., 110: 233–278, 1963.Google Scholar
[135] W., Thirring. Atoms, molecules and large systems, in Quantum Mathematical Physics, second ed. Springer-Verlag, Berlin, 2002. Translated from the 1979 and 1980 German originals by Evans M. Harrell II.Google Scholar
[136] L., Vaidman, Y., Aharonov and D., Albert. How to ascertain the values of σx, σy, and σz of a spin-1/2 particle. Phys. Rev. Lett., 58: 1385–1387, 1987.Google Scholar
[137] G., Vernam. Cipher printing telegraph system for secret wire and radio telegraphic communications. J. Am. Inst. Electr. Eng., 45: 109–115, 1926.Google Scholar
[138] J., von Neumann. Mathematical Foundations of Quantum Mechanics. Princeton University Press, 1955. Translated by R.T. Beyer from Mathematische Grundlagen der Quantenmechanik, Springer, Berlin, 1932.Google Scholar
[139] D.F., Walls and G.J., Milburn. Quantum Optics, second ed. Springer-Verlag, 2008.Google Scholar
[140] T.-C., Wei, K., Nemoto, P.M., Goldbart, P.G., Kwiat, W.J., Munro and F., Verstraete. Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A, 67:022 110, 2003.Google Scholar
[141] R.F., Werner. Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A, 40: 4277–4281, 1989.Google Scholar
[142] R.F., Werner. All teleportation and dense coding schemes. J. Phys. A, 34: 7081, 2001.Google Scholar
[143] E.P., Wigner. Die Messung quantenmechanischer Operatoren. Z. Physik, 133: 101–108, 1952.Google Scholar
[144] E.P., Wigner. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Expanded and improved edition, translated from the German by J. J. Griffin. Academic Press, New York, 1959.Google Scholar
[145] M.M., Wolf and J.I., Cirac. Dividing quantum channels. Commun. Math. Phys., 279: 147–168, 2008.Google Scholar
[146] M.M., Wolf, D., Perez-Garcia and C., Fernandez. Measurements incompatible in quantum theory cannot be measured jointly in any other no-signaling theory. Phys. Rev. Lett., 103: 230 402, 2009.Google Scholar
[147] W.K., Wootters and B.D., Fields. Optimal state-determination by mutually unbiased measurements. Ann. Physic, 191: 363–381, 1989.Google Scholar
[148] S. L., Woronowicz. Positive maps of low dimensional matrix algebras. Rep. Math. Phys, 10: 165–183, 1976.Google Scholar
[149] S., Yu, N., Liu, L., Li and C.H., Oh. Joint measurement of two unsharp observables of a qubit. Phys. Rev. A 81: 062 116, 2010.Google Scholar
[150] M., Ziman and V., Bužek. Entanglement-induced state ordering under local operations. Phys. Rev. A, 73: 012 312, 2006.Google Scholar
[151] M., Ziman and V., Bužek. Entanglement measures: state ordering vs. local operations. In M. Zukowski, ed., Quantum Communication and Security, pp. 196–204. IOS Press, 2007.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Teiko Heinosaari, University of Turku, Finland, Mário Ziman
  • Book: The Mathematical Language of Quantum Theory
  • Online publication: 05 January 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139031103.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Teiko Heinosaari, University of Turku, Finland, Mário Ziman
  • Book: The Mathematical Language of Quantum Theory
  • Online publication: 05 January 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139031103.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Teiko Heinosaari, University of Turku, Finland, Mário Ziman
  • Book: The Mathematical Language of Quantum Theory
  • Online publication: 05 January 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139031103.009
Available formats
×