Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-01T09:33:52.630Z Has data issue: false hasContentIssue false

10 - The shelf edge system

Published online by Cambridge University Press:  05 June 2012

John H. Simpson
Affiliation:
University of Wales, Bangor
Jonathan Sharples
Affiliation:
University of Liverpool
Get access

Summary

At the outer edge of the shelf is a region where the gentle slopes of the shelf give way to the much steeper topography of the continental slope, and bottom depths rapidly increase down to the abyssal plains of the deep ocean. On average, the depth at which this slope transition occurs is about 130 metres, but this varies through the world's oceans. Off NW Europe the shelf edge is at a depth of 200 metres, while at high latitudes the shelf edge is deeper, typically 400–500 metres around Antarctica and off Greenland. Because the topography is steep, with slopes as large as 1:10, the transition between shelf and the deep ocean is usually limited in extent (~50 km). It is in this rather narrow region that the very different regimes of the shelf and the deep ocean adjust to each other. In this chapter, we shall consider how this adjustment occurs and how it controls the important exchanges between shelf and deep-ocean. We will look at wind-driven upwelling, the most studied process linking the physics and the ecology of the shelf edge which, in many parts of the world, supports important stocks of plantivorous fish. We shall also consider the upwelling (and downwelling) driven by the bottom Ekman layer of along-slope flows, and the consequences for nutrient supply to, and organic material export from, shelf seas. We will describe the density contrasts that develop in winter between temperate shelf seas and the adjacent ocean that can lead to downslope cascades of shelf seawater and its constituents. Finally, we consider the role of the internal tide, a prominent shelf edge process which strongly influences the biochemistry and is important in relation to commercial fisheries.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The shelf edge system
  • John H. Simpson, University of Wales, Bangor, Jonathan Sharples, University of Liverpool
  • Book: Introduction to the Physical and Biological Oceanography of Shelf Seas
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139034098.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The shelf edge system
  • John H. Simpson, University of Wales, Bangor, Jonathan Sharples, University of Liverpool
  • Book: Introduction to the Physical and Biological Oceanography of Shelf Seas
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139034098.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The shelf edge system
  • John H. Simpson, University of Wales, Bangor, Jonathan Sharples, University of Liverpool
  • Book: Introduction to the Physical and Biological Oceanography of Shelf Seas
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139034098.013
Available formats
×