Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-02T19:32:20.681Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2013

Michael E. Q. Pilson
Affiliation:
University of Rhode Island
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbass, D. K. 1999. Endeavour and Resolution revisited: Newport and Captain James Cook’s vessels. J. Newport Historical Soc. 70: 1–19Google Scholar
Ainslie, M. A. and McColm, J. G.. 1998. A simplified formula for viscous and chemical absorption in sea water. J. Acoust. Soc. Am. 103: 1671–1672.CrossRefGoogle Scholar
Alduchov, O. A. and Eskridge, R. E.. 1996. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meterol. 35: 601–609.2.0.CO;2>CrossRefGoogle Scholar
Alexander, G. B. 1954. The polymerization of monosilicic acid. J. Am. Chem. Soc. 76: 2094–2096.CrossRefGoogle Scholar
Alexander, G. B., Heston, W. H., and Iler, R. K.. 1954. The solubility of amorphous silica in water. J. Phys. Chem. 58: 453–455.CrossRefGoogle Scholar
Alldredge, A. L. and Silver, M. W.. 1988. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20: 41–82.CrossRefGoogle Scholar
Aluwihare, L. I., Repeta, D. J., and Chen, R. F.. 1997. A major biopolymeric component to dissolved organic carbon in surface seawater. Nature 387: 166–169.CrossRefGoogle Scholar
Amakawa, H., Alibo, D. S., and Nozaki, Y.. 1996. Indium concentration in Pacific seawater. Geophys. Res. Lett. 23: 2473–2476.CrossRefGoogle Scholar
AMAP/UNEP. 2008. Technical Background Report to the Global Atmospheric Mercury Assessment. Arctic Monitoring and Assessment Programme/UNEP Chemicals Branch, Geneva.Google Scholar
Ambrose, D. and Sprake, C. H. S.. 1972. The vapour pressure of mercury. J. Chem. Thermodynamics 4: 603–620.CrossRefGoogle Scholar
Anbar, A. D., Creaser, R. A., Papanastassiou, D. A., and Wasserburg, G. J.. 1992. Rhenium in seawater: confirmation of generally conservative behavior. Geochim. Cosmochim. Acta 56: 4099–4103.CrossRefGoogle Scholar
Anbar, A. D., Wasserberg, G. J., Papanastassiou, D. A., and Andersson, P. S.. 1996. Iridium in natural waters. Science 273: 1524–1528.CrossRefGoogle Scholar
Anderson, L. A. and Sarmiento, J. L.. 1994. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles 8: 65–80.CrossRefGoogle Scholar
Anderson, M. B., Stirling, C. H., Zimmerman, B., and Halliday, A. N.. 2010. Precise determination of the open ocean 234U/238U ratio. Geochem. Geophys. Geosys. 11: .Google Scholar
Andersson, A. J,. Mackenzie, F. T., and Lerman, A.. 2005. Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. Am. J. Sci. 305: 875–918.CrossRefGoogle Scholar
Andersson, M., Wängberg, I, Gårdfeldt, K. and Munthe, J.. 2004. Investigation of the Henry’s Law coefficient for elemental mercury. Proceedings of the 7th Conference “Mercury as a global pollutant”. RMZ–Materials and Geoenvironment,Ljubljana, June, 2004.Google Scholar
Andersson, M. E., Sommar, J., Gårdfeldt, K, and Lindqvist, O.. 2008. Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean. Mar. Chem. 110: 190–194.CrossRefGoogle Scholar
Andreae, M. O. and Ferek, R. J.. 1992. Photochemical production of carbonyl sulfide in seawater and its emission to the atmosphere. Global Biogeochem. Cycles 6: 175–183.CrossRefGoogle Scholar
Andreae, M. O. and Barnard, W. R.. 1984. The marine chemistry of dimethylsulfide. Mar. Chem. 14: 267–279.CrossRefGoogle Scholar
Andrews, A. P. 1983. Maya Salt Production and Trade. University of Arizona Press, Tuscon, AZ.Google Scholar
Archer, D. 2005. Fate of fossil fuel CO2 in geologic time. J. Geophys. Res. 110: C09S05, .CrossRefGoogle Scholar
Archer, D., Eby, M., Brovkin, V., et al. 2009. Atmospheric lifetime of fossil fuel carbon dioxide. Ann. Rev. Earth Planet. Sci. 37: 117–134.CrossRefGoogle Scholar
Aristotle, . 1931. The Works of Aristotle, translated into English under the editorship of W. D. Ross. Vols. III and IV, Oxford, Clarendon Press, p. 351.Google Scholar
Armstrong, F. A. J. and Harvey, H. W.. 1950. The cycle of phosphorus in the waters of the English Channel. J. Mar. Biol. Ass. UK 29: 145–162.CrossRefGoogle Scholar
Armstrong, F. A. J., Williams, P. M., and Strickland, J. D. H.. 1966. Photo-oxidation of organic matter in seawater by ultra-violet radiation, analytical and other applications. Nature 211: 481–483.CrossRefGoogle Scholar
Arrhenius, G. and De, B. R.Alfven, H.. 1974. Origin of the ocean. In The Sea, vol. 5, ed. Goldberg, E. D.. John Wiley & Sons, New York, pp. 839–861.Google Scholar
Arrhenius, S. 1896. On the influence of carbonic acid in the air upon the temperature of the ground. Phil. Mag. (Ser. 5) 41: 237–276.CrossRefGoogle Scholar
Arrhenius, S. 1908. Worlds in the Making. Harper & Brothers, New York. (Translated by Dr. H. Borns from the Swedish: Världarnas utveckling, 1906.)Google Scholar
Atlas, E., Culberson, C, and Pytkowicz, R. M.. 1976. Phosphate association with Na+, Ca2+, and Mg2+ in seawater. Mar. Chem. 4: 243–254.CrossRefGoogle Scholar
Baertschi, P. 1976. Absolute 18O content of standard mean ocean water. Earth Planet. Sci. Lett. 31: 341–344.CrossRefGoogle Scholar
Bainbridge, A. E. 1981. GEOSECS Atlantic Expedition, Hydrographic Data 1972–1973. US Government Printing Office, Washington, DC.Google Scholar
Baker, E. T. and Massoth, G. J.. 1987. Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge. Earth Planet. Sci. Lett. 85: 59–73.CrossRefGoogle Scholar
Baker, E. T., Massoth, G. J., and Feely, R. A.. 1987. Cataclysmic hydrothermal venting on the Juan de Fuca Ridge. Nature 329: 149–151.CrossRefGoogle Scholar
Barber, R. T. and Ryther, J. H.. 1969. Organic chelators: factors affecting primary production in the Cromwell Current upwelling. J. Exp. Mar. Biol. Ecol. 3: 191–199.CrossRefGoogle Scholar
Bareille, G, Labracherie, M., Mortlock, R. A., Maier-Reimer, E., and Froelich, P. N.. 1998. A test of (Ge/Si)opal as a paleorecorder of (Ge/Si)seawater. Geology 26: 179–182.2.3.CO;2>CrossRefGoogle Scholar
Barth, T. F. W. 1952. Theoretical Petrology. Wiley, New York,Google Scholar
Baumgartner, A. and Reichel, E.. 1975. The World Water Balance. R.Olenberg, Munich and Vienna.Google Scholar
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.. 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13: 150–160.CrossRefGoogle Scholar
Bender, M. L., Fanning, K. A., Froelich, P. N., Heath, G. R., and Maynard, V.. 1977. Interstitial nitrate profiles and oxidation of sedimentary organic matter in the eastern equatorial Atlantic. Science 198: 605–609.CrossRefGoogle ScholarPubMed
Bender, M., Sowers, T., and Labeyrie, L.. 1994. The Dole effect and its variations during the last 130,000 years as measured in the Vostock ice core. Global Biogeochem. Cycles 8: 363–376.CrossRefGoogle Scholar
Benitez-Nelson, C. R. 2000. The biogeochemical cycling of phosphorus in marine systems. Earth-Sci. Rev. 51: 109–135.CrossRefGoogle Scholar
Benson, B. B. and Krause, D., Jr. 1980. The concentration and isotopic fractionation of gases dissolved in freshwater in equilibrium with the atmosphere. 1. Oxygen. Limnol. Oceanogr. 25: 662–671.CrossRefGoogle Scholar
Berger, W. H., Fischer, K., Lai, C., and Wu, G.. 1988. Ocean carbon flux: maps of primary production and export production. In Biogeochemical Cycling and Fluxes between the Deep Euphotic Zone and Other Oceanic Realms, ed. Agegian, C. R.. NOAA, Washington, DC, pp. 131–176.Google Scholar
Berger, W. H., Smetacek, V. S., and Wefer, G., eds. 1989. Productivity of the Ocean: Present and Past. Dahlem Workshop Report, Life Sciences Research Report 44. John Wiley & Sons, New York.Google Scholar
Berman-Frank, I., Cullen, J. T., Shaked, Y., Sherrell, R. M., and Falkowski, P. G.. 2001. Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol. Oceanol. 46: 1249–1260.CrossRefGoogle Scholar
Berner, E. K. and Berner, R. A.. 1987. The Global Water Cycle: Geochemistry and the Environment. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Berner, R. A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282: 451–473.CrossRefGoogle Scholar
Berner, R. A. and Canfield, D. E.. 1989. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289: 333–361.CrossRefGoogle ScholarPubMed
Berner, R. A. and Morse, J. W.. 1974. Dissolution kinetics of calcium carbonate in seawater: IV. Theory of calcite dissolution. Am. J. Sci. 274: 108–134.CrossRefGoogle Scholar
Bernstein, R. E., Betzer, P. R., Feely, R. A., et al. 1987. Acantharian fluxes and strontium-to-chlorinity ratios in the North Pacific Ocean. Science 237: 1490–1494.CrossRefGoogle ScholarPubMed
Bertine, K. K., Koide, M., and Goldberg, E. D.. 1993. Aspects of rhodium marine chemistry. Mar. Chem. 42: 199–210.CrossRefGoogle Scholar
Betzer, P. R., Showers, W. J., Laws, E. A., et al. 1984. Primary productivity and particle fluxes on a transect of the equator at 153° W in the Pacific Ocean. Deep-Sea Res. 31: 1–11.CrossRefGoogle Scholar
Bieri, R. H. 1971. Dissolved noble gases in marine waters. Earth Planet. Sci. Lett. 10: 329–333.CrossRefGoogle Scholar
Bigg, P. H. 1967. Density of water in SI units over the range 0–40 °C. Brit. J. Appl. Phys. 18: 521–525.CrossRefGoogle Scholar
Bignell, N. 1983. The effect of dissolved air on the density of water. Metrologia 19: 57–59.CrossRefGoogle Scholar
Billen, G., Lancelot, C., and Meybeck, M.. 1991. N, P, and Si retention along the aquatic continuum from land to ocean. In Ocean Margin Processes in Global Change. ed Mantoura, R. F. C., Martin, J-M., and Wollast, R.. John Wiley & Sons, New York, pp. 19–44.Google Scholar
Bischoff, J. L. and Rosenbauer, R. J.. 1985. An empirical equation of state for hydrothermal seawater (3.2 percent NaCl). Am. J. Sci. 285: 725–763.CrossRefGoogle Scholar
Bischoff, J. L. and Rosenbauer, R. J.. 1988. Liquid–vapor relations in the critical region of the system NaCl.H2O from 380 to 415°C: a refined determination of the critical point and two-phase boundary of seawater. Geochim. Cosmochim. Acta 52: 2121–2126.CrossRefGoogle Scholar
Bischoff, J. L. and Rosenbauer, R. J.. 1989. Salinity variations in submarine hydrothermal systems by layered double-diffusive convection. J. Geol. 97: 613–623.CrossRefGoogle Scholar
Bishop, J. K. B. 1989. Regional extremes in particulate matter composition and flux: effects on the chemistry of the ocean interior. In Productivity of the Ocean: Present and Past, ed. Berger, H., Smetacek, V. S., and Wefer, G.. John Wiley & Sons, New York, pp. 117–137.Google Scholar
Bloch, M. R. 1963. The social influence of salt. Sci. Am. 209: 88–98.CrossRefGoogle Scholar
Boden, T. A., Marland, G., and Andres, R. J.. 2011. Global, Regional, and National Fossil-Fuel CO2 Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, .Google Scholar
Bolin, B. 1960. On the exchange of carbon dioxide between the atmosphere and the sea. Tellus 12: 274–281.CrossRefGoogle Scholar
Bolin, B. and Keeling, C. D.. 1963. Large scale atmospheric mixing as deduced from the seasonal and meridional variations of carbon dioxide. J. Geophys. Res. 68: 3899–3920.CrossRefGoogle Scholar
Borchert, H. 1965. Principles of oceanic salt deposition and metamorphism. In Chemical Oceanography, vol. 2, ed. Riley, J. P. and Skirrow, G.. Academic Press, New York, pp. 205–276.Google Scholar
Boyd, P. W., Watson, A. J., Law, C. S., et al. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407: 695–701.CrossRefGoogle ScholarPubMed
Boyd, P. W., Jickells, T., Law, C. S. et al. 2007. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315: 612–617.CrossRefGoogle ScholarPubMed
Boyle, E. A. 1988. Cadmium: chemical tracer of deepwater paleoceanography. Paleoceanography 3: 471–489.CrossRefGoogle Scholar
Boyle, E. and Edmond, J. M.. 1975. Copper in surface waters south of New Zealand. Nature 253: 107–109.CrossRefGoogle Scholar
Boyle, R. 1673. Observations and experiments about the saltness of the sea. In The Works of the Honourable Robert Boyle, vol. 7, ed. Hunter, M. and Davis, E. B.. Pickering & Chatto, London, 1999, pp. 389–412.Google Scholar
BP. 2011. BP Statistical Review of World Energy June 2010. BP, London.Google Scholar
Bradshaw, A. L., Brewer, P. G., Shafer, D. K., and Williams, R. T.. 1981. Measurements of total carbon dioxide and alkalinity by potentiometric titration in the GEOSECS program. Earth Planet. Sci. Lett. 55: 99–115.CrossRefGoogle Scholar
Braitsch, O. 1971. Salt Deposits, Their Origin and Composition. Translated by P. J. Burek and A. E. M. Nairn. Springer-Verlag, New York.CrossRefGoogle Scholar
Brand, L. E., Sunda, W. G., and Guillard, R. R. L.. 1986. Reduction of marine phytoplankton growth rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 96: 224–250.CrossRefGoogle Scholar
Brewer, P. 1971. Hydrographic and Chemical Data from the Black Sea. WHOI Technical Report 71–65, Woods Hole Oceanographic Institution, Woods Hole, MA.Google Scholar
Brewer, P. G. and Spencer, D. W.. 1970. Trace element intercalibration study. Technical Report No. 70–62. Unpublished manuscript. Woods Hole Oceanographic Institution, Woods Hole, MA.
Brewer, P. G. and Spencer, D. W.. 1974. Distribution of some trace elements in Black Sea and their flux between dissolved and particulate phases. In The Black Sea – Geology, Chemistry, and Biology, ed. Degens, E. T. and Ross, D. A.. American Association of Petroleum Geologists, Tulsa, OK, pp. 137–143.Google Scholar
Brindley, G. W. and Brown, G., eds. 1980. Crystal Structures of Clay Minerals and Their X-Ray Identification. Mineralogical Society, London.CrossRefGoogle Scholar
Broadgate, W. J., Liss, P. S., and Penkett, S. A.. 1997. Seasonal emissions of isoprene and other reactive hydrocarbon gases from the ocean. Geophys. Res. Lett. 24: 2675–2678.CrossRefGoogle Scholar
Broecker, W. S. 1989. The salinity contrast between the Atlantic and Pacific oceans during glacial time. Paleoceanography 4: 207–212.CrossRefGoogle Scholar
Broecker, W. S. 1991. The great ocean conveyer. Oceanography 4: 79–89.CrossRefGoogle Scholar
Broecker, W. S. and Peng, T. -H.. 1974. Gas exchange rates between the air and the sea. Tellus 26: 21–35.CrossRefGoogle Scholar
Broecker, W. S. and Peng, T. -H.. 1982. Tracers in the Sea. ELDIGIO Press, Lamont-Doherty Geological Observatory, Columbia University, New York.Google Scholar
Broecker, W. S. and Takahashi, T.. 1978. The relationship between lysocline depth and in-situ carbonate ion concentration. Deep-Sea Res. 25: 65–95.Google Scholar
Broecker, W. S., Kaufman, A., and Trier, R. M.. 1973. The residence time of thorium in surface sea water and its implications regarding the rate of reactive pollutants. Earth Planet. Sci. Lett. 20: 35–44.CrossRefGoogle Scholar
Broecker, W. S., Spencer, D. W., and Craig, H.. 1982. GEOSECS Pacific Expedition, Hydrographic Data 1973–1974. US Government Printing Office, Washington, DC.Google Scholar
Broecker, W. S., Sutherland, S., Smethie, W., Peng, T. H., and Ostlund, G.. 1995. Oceanic radiocarbon: separation of the natural and bomb components. Global Biogeochem. Cycles 9: 263–288.CrossRefGoogle Scholar
Broecker, W. S., Takahashi, T., and Takahashi, T.. 1985. Sources and flow patterns of deep-ocean waters as deduced from potential temperature, salinity, and initial phosphate concentration. J. Geophy. Res. 90: 6925–6939.CrossRefGoogle Scholar
Broecker, W. S., Peng, T. -H., Ostlund, G., and Stuiver, M.. 1985a. The distribution of bomb radiocarbon in the ocean. J. Geophys. Res. 90: 6953–6970.CrossRefGoogle Scholar
Brown, C. A. 1942. Liebig and the law of the minimum. In Liebig and after Liebig, ed. Moulton, F. R.. American Assocation for the Advancement of Science, Washington, DC, pp. 71–82.Google Scholar
Bruland, K. W. 1980. Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planet. Sci. Lett. 47: 176–198.CrossRefGoogle Scholar
Bruland, K. W. 1983. Trace elements in seawater. In Chemical Oceanography, 2nd edn., vol. 8, ed. Riley, J. P. and Chester, R.. Academic Press, New York, pp. 157–220.CrossRefGoogle Scholar
Bruland, K. W. and Franks, R P.. 1983. Mn, Ni, Cu, Zn and Cd in the western North Atlantic. In Trace Metals in Sea Water, ed. Wong, C. S., Boyle, E., Bruland, K. W., Burton, J. D., and Goldberg, E. D.. Plenum Press, New York, pp. 395–414.CrossRefGoogle Scholar
Bruland, K. W. and Rue, E. L.. 2001. Analytical methods for the determination of concentrations and speciation of iron. In The Biogeochemistry of Iron in Seawater, ed. Turner, D. R. and Hunter, K. A.. Wiley, New York,, pp. 255–289.Google Scholar
Buesseler, K. O. 1991. Do upper-ocean sediment traps provide an accurate record of particle flux?Nature 353: 420–423.CrossRefGoogle Scholar
Buesseler, K. O., Bauer, J. E., Chen, R. F., et al. 1996. An intercomparison of cross-flow filtration techniques used for sampling marine colloids: overview and organic carbon results. Mar. Chem. 55: 1–31.CrossRefGoogle Scholar
Burke, W. H., Denison, R. E., Hetherington, E. A., et al. 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10: 516–519.2.0.CO;2>CrossRefGoogle Scholar
Burton, J. D. 1975. Radioactive nuclides in the marine environment. In Chemical Oceanography, 2nd edn, vol. 3, ed. Riley, J. P. and Skirrow, G.. Academic Press, New York, pp. 91–191.Google Scholar
Butler, A. 2005. Marine siderophores and microbial iron utilization. BioMetals 18: 369–374.CrossRefGoogle Scholar
Butler, J. N. 1982. Carbon Dioxide Equilibria and Their Applications. Addison-Wesley,Reading, MA.Google Scholar
Byrne, R. H. and Breland, J. A.. 1989. High precision multiwavelength pH determinations in seawater using cresol red. Deep-Sea Res. 36: 803–10.CrossRefGoogle Scholar
Byrne, R. H., Kump, L. R., and Cantrell, K. J.. 1988. The influence of temperature and pH on trace metal speciation in seawater. Mar. Chem. 25: 163–181.CrossRefGoogle Scholar
Byrne, R. H., Luo, Y. -R., and Young, R. W.. 2002. Iron hydrolysis and solubility revisited: observations and comments on iron hydrolysis characterizations. Mar. Chem. 70: 23–35.CrossRefGoogle Scholar
Cai, W. -J. and Wang, Y.. 1998. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol. Oceanogr. 43: 657–668.CrossRefGoogle Scholar
Calvert, S. E. 1983. Sedimentary geochemistry of silicon. In Silicon Geochemistry and Biogeochemistry, ed Aston, S. R.. Academic Press, London, pp. 143–186.Google Scholar
Calvert, S. E., Karlin, R. E., Toolin, L. J., et al. 1991. Low organic carbon accumulation rates in Black Sea sediments. Nature 350: 692–695.CrossRefGoogle Scholar
Cann, J. R. and Strens, M. R.. 1989. Modeling periodic megaplume emission by black smoker systems. J. Geophys. Res. 94: 12,227–12,237.CrossRefGoogle Scholar
Canup, R. M. and Asphaug, E.. 2001. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412: 708–712.CrossRefGoogle Scholar
Capone, D. G., Bronk, D. A., Mulholand, M. R., and Carpenter, E., eds. 2009. Nitrogen in the Marine Environment, 2nd edn. Academic Press, San Diego, CA.Google Scholar
Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., and Carpenter, E. J.. 1997. Trichodesmium, a globally significant marine cyanobacterium. Nature 276: 1221–1229.Google Scholar
Carpenter, E. J. and Romans, K.. 1991. Major role of the cyanobacterium Trichodesmium in nutrient cycling in the North Atlantic Ocean. Science 254: 1356–1358.CrossRefGoogle ScholarPubMed
Carpenter, J. H. and Manella, M. E.. 1973. Magnesium-to-chlorinity ratios in seawater. J. Geophys. Res. 78: 3621–3626.CrossRefGoogle Scholar
Carson, R. 1951. The Sea Around Us. Oxford University Press, New York.Google Scholar
Caspers, H. 1957. The Black Sea and Sea of Azov. In Treatise on Marine Ecology and Paleoecology, vol. 1, ed Hedgpeth, J. W.. Geological Society of America, Washington, DC, pp. 801–889.Google Scholar
Chappuis, P. 1907. Dilatation de l’eau. Travaux et Mémoires du Bureau International des Poids et Mesures 13: D1–D40 Cited from Menaché in UNESCO 1976.
Charette, M. A. and Smith, W. H. F.. 2010. The volume of Earth’s ocean. Oceanography 23: 112–114.CrossRefGoogle Scholar
Chave, K. E. and Suess, E.. 1967. Suspended minerals in sea water. Trans. New York Acad. Sci. 29: 991–1000.CrossRefGoogle Scholar
Chen, C., Sedwick, P. N. and Sharma, M.. 2009. Anthropogenic osmium in rain and snow reveals global-scale atmospheric contamination. Proc. Natl. Acad. Sci. 106: 7724–7728.CrossRefGoogle ScholarPubMed
Chen, I. H., Edwards, R. L., and Wasserburg, G. J.. 1986 238U, 234U and 232Th in seawater Earth Planet. Sci. Lett. 80: 241–251.Google Scholar
Christian, J. R., Lewis, M. R., and Karl, D. M.. 1997. Vertical fluxes of carbon, nitrogen, and phosphorus in the North Pacific Subtropical Gyre near Hawaii. J. Geophys. Res. 102: 15,667–15,677.CrossRefGoogle Scholar
Clark, F. W. 1908. The Data of Geochemistry. Bulletin No. 330. United States Geological Survey, Washington, DC.Google Scholar
Clark, W. B., Beg, M. A., and Craig, H.. 1969. Excess 3He in the sea: evidence for terrestrial primordial helium. Earth Planet. Sci. Lett. 6: 213–220.CrossRefGoogle Scholar
Clayton, T. D. and Byrne, R. H.. 1993. Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Res. 40: 2115–2129.CrossRefGoogle Scholar
Clever, H. L., Johnson, S. A., and Derrick, M. E.. 1985. The solubility of mercury and some sparingly soluble mercury salts in water and aqueous electrolyte solutions. J. Phys. Chem. Ref. Data 14: 631–680.CrossRefGoogle Scholar
Coale, K. H. and Bruland, K. W.. 1990. Spatial and temporal variability in copper complexation in the North Pacific. Deep-Sea Res. 37: 317–336.CrossRefGoogle Scholar
Codispoti, L. A. 2007. An oceanic fixed nitrogen sink exceeding 400 Tg N a−1 vs. the concept of homeostasis in the fixed-nitrogen inventory. Biogeosciences 4: 233–253.CrossRefGoogle Scholar
Codispoti, L. A., Friederich, G. E., Murray, J. W., and Sakamoto, C. M.. 1991. Chemical variability in the Black Sea: implications of continuous vertical profiles that penetrated the oxic/anoxic interface. Deep-Sea Res. 38 (Suppl. 2): S691–S710.CrossRefGoogle Scholar
Converse, D. R., Holland, H. D., and Edmond, J. M.. 1984. Flow rates in the axial hot springs of the East Pacific Rise (21º N): implications for the heat budget and the formation of massive sulfide deposits. Earth Planet. Sci. 69: 159–175.CrossRefGoogle Scholar
Coplen, T. B. 1994. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure Appl. Chem. 66: 273–276.CrossRefGoogle Scholar
Copping, A. E. and Lorenzen, C. J.. 1980. Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer. Limnol. Oceanogr. 25: 873–882.CrossRefGoogle Scholar
Cowey, C. B. 1956. A preliminary investigation of the variation of vitamin B12 in oceanic and coastal waters. J. Mar. Biol. Ass. UK 35: 609–620.CrossRefGoogle Scholar
Cox, R. A., Culkin, F., Greenhalgh, R., and Riley, J. P.. 1962. Chlorinity, conductivity and density of seawater. Nature 193: 518–520.CrossRefGoogle Scholar
Cox, R. A., Culkin, F., and Riley, J. P.. 1967. The electrical conductivity/conductivity relationship in natural seawater. Deep-Sea Res. 14: 203–220.Google Scholar
Cox, R. A., McCartney, M. J., and Culkin, F.. 1970. The specific gravity/salinity/temperature relationship in natural seawater. Deep-Sea Res. 17: 679–689.Google Scholar
Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12: 133149.CrossRefGoogle Scholar
Craig, H. 1961a. Isotopic variations in meteoric waters. Science 133: 1702–1703.CrossRefGoogle ScholarPubMed
Craig, H. 1961b. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133: 1833–1834.CrossRefGoogle ScholarPubMed
Craig, H. 1966. Isotopic composition and origin of the Red Sea and Salton Sea geothermal brines. Science 154: 1544–1548.CrossRefGoogle ScholarPubMed
Craig, H. and Gordon, L. I.. 1965. Isotopic oceanography: deuterium and oxygen-18 variation in the ocean and marine atmosphere. In Marine Geochemistry, ed Schink, D. R. and Corless, J. T.. Occasasional Publication No. 3, Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, pp. 277–374.Google Scholar
Craig, H. and Hayward, T.. 1987. Oxygen supersaturation in the ocean: biological versus physical contributions. Science 235: 199–202.CrossRefGoogle ScholarPubMed
Craig, H. and Weiss, R. F.. 1971. Dissolved gas saturation anomalies and excess helium in the ocean. Earth Planet. Sci. Lett. 10: 289–296.CrossRefGoogle Scholar
Crawford, E. 1996. Arrhenius, From Ionic Theory to the Greenhouse Effect. Science History Publications, Canton, MA.Google Scholar
Cronan, D. S. 2001. Manganese Nodules. In Encyclopedia of Ocean Sciences, ed. Steel, J.. Academic Press, San Diego, CA, pp. 1526–1533.CrossRefGoogle Scholar
Culberson, C. and Pytkowicz, R. M.. 1968. Effect of pressure on carbonic acid, boric acid and the pH in seawater. Limnol. Oceanogr. 13: 403–417.CrossRefGoogle Scholar
Culkin, F. 1965. The major constituents of seawater. In Chemical Oceanography, vol. 1, ed Riley, J. P. and Skirrow, G.. Academic Press, New York, pp. 121–161.Google Scholar
Culkin, F. and Cox, R. A.. 1966. Sodium, potassium, magnesium, calcium and strontium in seawater. Deep-Sea Res. 13: 789–804.Google Scholar
Cullen, W. R. and Reimer, K. J.. 1989. Arsenic speciation in the environment. Chem. Rev. 89: 713–764.CrossRefGoogle Scholar
Cutter, G. A. and Bruland, K. W.. 1984. The marine biogeochemistry of selenium: a re-evaluation. Limnol. Oceanogr. 29: 1179–1192.CrossRefGoogle Scholar
Damsté, J. S. S., Strous, M., and Rijpstra, W. I. C.. 2002. Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419: 708–712.CrossRefGoogle Scholar
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16: 436–468.CrossRefGoogle Scholar
Davy, H. 1811. The Bakerian Lecture. On some of the combinations of oxymuriatic gas and oxygene, and on the chemical relations of these principles, to inflammable bodies. Phil. Trans. R. Soc. 101: 1–35.CrossRefGoogle Scholar
de Baar, H. J. W., Saager, P. M., Nolting, R. F., and van der Meer, J.. 1994. Cadmium versus phosphate in the world ocean. Mar. Chem. 46: 261–281.CrossRefGoogle Scholar
de Baar, H. J. W., Boyd, P. W., Coale, K. H., et al. 2005. Synthesis of iron fertilization experiments: from the iron age to the age of enlightenment. J. Geophys. Res. 110 : C09S16.CrossRefGoogle Scholar
De’ath, G., Lough, J. M., and Fabricius, K. E.. 2009. Declining coral calcification on the Great Barrier Reef. Science 323: 116–119.CrossRefGoogle ScholarPubMed
Deacon, M. 1971. Scientists and the Sea 1650–1900; A Study of Marine Science. Academic Press, London.Google Scholar
Degens, E. T. and Ross, D. A., eds. 1974. The Black Sea – Geology, Chemistry and Biology. American Association of Petroleum Geologists, Tulsa, OK.Google Scholar
Denman, , Brasseur, K. L. G., Chidthaisong, A., et al. 2007. Couplings between changes in the climate system and biogeochemistry. In Solomon et al. (2007), ch. 7, pp. 499–587.
Deuser, W. G. 1975. Reducing environments. In Chemical Oceanography, 2nd edn. vol. 3, ed. Riley, J. P. and Skirrow, G.. Academic Press, New York, pp. 1–37.Google Scholar
Deuser, W. G. 1987. Variability of hydrography and particle flux: transient and long-term relationships. Mitt. Geol-Poläont. Inst. Univ. Hamburg 62: 179–193.Google Scholar
Dholabhai, P. D., Englezos, P., Kalogerakis, N., and Bishnoi, P. R.. 1991. Equilibrium conditions for methane hydrate formation in aqueous mixed electrolyte solutions. Can. J. Chem. Eng. 69: 800–805.CrossRefGoogle Scholar
Dickson, A. G. 1984. pH scales and proton-transfer reactions in saline media such as sea water. Geochim. Cosmochim. Acta 48: 2299–2308.CrossRefGoogle Scholar
Dickson, A. G. 1993. The measurement of seawater pH. Mar. Chem. 44: 131–142.CrossRefGoogle Scholar
Dickson, A. G. 1990a. Standard potential of the reaction: AgCl(s) + 1/2 H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4− in synthetic seawater from 273.15 to 318.15 K. J. Chem. Thermodynam. 22:113–127.CrossRefGoogle Scholar
Dickson, A. G. 1990b. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Res. 37: 755–766.CrossRefGoogle Scholar
Dickson, A. G. 1993. pH buffers for sea water media based on the total hydrogen ion concentration scale. Deep-Sea Res. 40:107–118.CrossRefGoogle Scholar
Dickson, A. G., Sabine, C. L., and Christian, J. R., eds. 2007. Guide to the best practices for ocean CO2 measurements. PICES Special Publication 3. Available from CDIAC; see .
Dickson, R. R., Meincke, J., Malmberg, S. -A. and Lee, A. J.. 1988. The great salinity anomaly in the North Atlantic 1968–1982. Prog. Oceanog. 20: 103–151.CrossRefGoogle Scholar
Dittmar, W. 1884. Report on researches into the composition of ocean-water collected by H.M.S. Challenger during the years 1873–1876. In Report of the Scientific Results of the Voyage of H.M.S. Challenger during the years 1873–1876, Physics and Chemistry, vol. 1, ed Murray, J.. H. M. Stationery Office, London, pp. 1–251.Google Scholar
Doherty, B. T. and Kester, D. R.. 1974. Freezing point of seawater. J. Mar. Res. 32: 285–300.Google Scholar
Donat, J. R. and Bruland, K. W.. 1995. Trace elements in the oceans. In Trace Elements in Natural Waters, ed Salbu, B. and Steinnes, E.. CRC Press, Boca Raton, FL, pp. 247–281.Google Scholar
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J.. 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1: 169–192.CrossRefGoogle ScholarPubMed
Donlon, C. J. and Robinson, I. S.. 1997. Observations of the oceanic thermal skin in the Atlantic. J. Geophys. Res. 102: 18,585–18,606CrossRefGoogle Scholar
Drake, M. J. and Righter, K.. 2002. Determining the composition of the Earth. Nature 416: 39–44.CrossRefGoogle Scholar
Druffel, E. M. 1980. Radiocarbon in annual coral rings of the Pacific and Atlantic Oceans. Ph.D. Dissertation. University of California, San Diego, CA.Google Scholar
Druffel, E. R. M., Williams, P. M., Bauer, J. E., and Ertel, J. R.. 1992. Cycling of dissolved and particulate organic matter in the open ocean. J. Geophys. Res. 97: 15, 639–15,659.CrossRefGoogle Scholar
Duarte, C. M., Merino, M., and Gallegos, M.. 1995. Evidence of iron deficiency in seagrasses growing above carbonate sediments. Limnol. Oceanogr. 40: 1153–1158.CrossRefGoogle Scholar
Duce, R. A. 1989. Exchange of particulate carbon and nutrients across the air/sea interface. In The Ocean as a Source and Sink for Atmospheric Trace Constituents. UNESCO, Paris, pp. 30–43.Google Scholar
Duce, R. A. and Tindale, N. W.. 1991. Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr. 36: 1715–1726.CrossRefGoogle Scholar
Duce, R. A., LaRoche, J., Altieri, K., et al. 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320: 893–897.CrossRefGoogle ScholarPubMed
Duce, R. A., Liss, P. S., Merrill, J. T., et al . 1991. The atmospheric input of trace species to the world ocean. Global Biogeochem. Cycles 5:193–259.CrossRefGoogle Scholar
Dugdale, R. C. and Goering, J. J.. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196–206.CrossRefGoogle Scholar
Dunbar, M. J. 1967. Exploring the Arctic Ocean. Oceanol. Int. (May–June): 31–35x.Google Scholar
Dyni, J. R. 2006. Geology and resources of some world oil-shale deposits. US Geological Survey Science Investigations Report 2005–5294.Google Scholar
Edmond, J. M., Measures, C., McDuff, R. E., Chan, L. H., Collier, R., and Grant, B.. 1979. Ridgecrest hydrothermal activity and the balances of the major and minor elements in the ocean; the Galapagos data. Earth Planet. Sci. Lett. 46: 1–18.CrossRefGoogle Scholar
Edmonds, J. S., Francesconi, K. A., Cannon, J. R., et al. 1977. Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituent of the western rock lobster Panulirius longipes cygnus George. Tetrahedron Lett. No. 18: 1543–1546.CrossRefGoogle Scholar
Eglington, T. I. and Repeta, D. J.. 2006. Organic matter in the contemporary ocean. In The Oceans and Marine Geochemitsry, ed. Elderfield, H. (Treatise on Geochemistry, vol. 6, ed. Holland, H. D. and Turekian, K. K.). Elsevier, New York, pp. 145–180.Google Scholar
Elderfield, H. and Schultz, A.. 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Ann. Rev. Earth Planet. Sci. 24: 191–224.CrossRefGoogle Scholar
Emerson, S. 1995. Enhanced transport of carbon dioxide during gas exchange. In Air–Water Gas Transfer, ed. Jähne, B. and Monahan, E. C.. AEON Verlag & Studio, Hanau, pp. 23–35Google Scholar
Emerson, S. and Bender, M.. 1981. Carbon fluxes at the sediment–water interface of the deep sea: calcium carbonate preservation. J. Mar. Res. 39: 139–162.Google Scholar
Eppley, R. W. and Peterson, B. J.. 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282: 677–680.CrossRefGoogle Scholar
Erickson, D. J.. 1989. Ocean to atmosphere carbon monoxide flux: global inventory and climate implications. Global Biogeochem. Cycles 3: 305–314.CrossRefGoogle Scholar
Eugster, H. P., Harvie, C. E., and Weare, J. H.. 1980. Mineral equilibria in a six-component seawater system, Na–K–Mg–Ca–SO4–Cl–H2O, at 25 °C. Geochim. Cosmochim. Acta 44: 1335–1347.CrossRefGoogle Scholar
Falkner, K. K. and Edmond, J. M.. 1990. Gold in seawater. Earth Planet. Sci. Lett. 98: 208–221.CrossRefGoogle Scholar
Falkowski, P. G. and Raven, J. A.. 2007. Aquatic Photosynthesis, 2nd edn. Blackwell Science, Malden, MA.
Fanning, K. A. 1992. Nutrient provinces in the sea: concentration ratios, reaction rate ratios and ideal covariation. J. Geophys. Res. 97: 5693–5712.CrossRefGoogle Scholar
Faraday, M. 1823. On hydrate of chlorine. Quart. J. Sci. 15: 429.Google Scholar
Faulkner, J. and Anderson, R. J.. 1974. Natural products chemistry of the marine environment. In The Sea, vol. 5, ed. Goldberg, E. D.. John Wiley & Sons, New York, pp. 679–714.Google Scholar
Faure, G. 1986. Principles of Isotope Geology, 2nd edn. John Wiley & Sons, New York.Google Scholar
Feely, R., Sabine, C., Millero, F., Wanninkhof, R., and Hansell, D.. 2006. Carbon dioxide, hydrographic, and chemical data obtained during the R/V Thomas Thompson Cruise in the Pacific Ocean on CLIVAR Repeat Hydrography Sections P16N, 2006. CDIAC, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN. See: .
Feistel, R. 2003. A new extended Gibbs thermodynamic potential of seawater. Prog.Oceanogr. 58: 43–114.CrossRefGoogle Scholar
Field, C. B., Beheenfeld, M. J.. Randerson, J. T., and Falkowski, P.. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–240.CrossRefGoogle ScholarPubMed
Firestone, R. B. and Shirley, V. S., eds., 1996. Table of Isotopes, vols. 1–2. John Wiley & Sons, New York.Google Scholar
Fitzgerald, W. F. 1989. Atmospheric and oceanic cycling of mercury. In Chemical Oceanography, 2nd edn., vol. 10, ed. Riley, J. P., Chester, R., and Duce, R. A.. Academic Press, New York, pp. 151–186.Google Scholar
Fitzgerald, W. F., Lamborg, C. H., and Hammerschmidt, C. R.. 2007. Marine biogeochemical cycling of mercury. Chem Rev. 107: 641–662.CrossRefGoogle ScholarPubMed
Fitzwater, S. E., Knauer, G. A., and Martin, J. H.. 1982. Metal contamination and its effect on primary production measurements. Limnol. Oceanogr. 27: 544–551.CrossRefGoogle Scholar
Fofonoff, N. P. 1985. Physical properties of seawater: a new salinity scale and equation of state for seawater. J. Geophys. Res. 90: 3332–3342.CrossRefGoogle Scholar
Fofonoff, N. P. and Millard, R. C., Jr. 1983. Algorithms for computation of fundamental properties of seawater. UNESCO Technical Papers in Marine Science, vol 44. UNESCO, Paris.Google Scholar
Fogg, G. E. 1975. Primary productivity. In Chemical Oceanography, 2nd edn.,vol. 2, ed. Riley, J. P. and Skirrow, G.. Academic Press, New York, pp. 385–453.Google Scholar
Forchhammer, G. 1865. On the composition of seawater in the different parts of the ocean. Phil. Trans. R. Soc. London 155: 203–262.CrossRefGoogle Scholar
Fox, D., Isaacs, J., and Corcoran, E.. 1952. Marine leptopel, its recovery, measurement and distribution. J. Mar. Res. 11:29–46.Google Scholar
Francesconi, K. A. and Edmonds, J. S.. 1998. Arsenic species in marine samples. Croatica Chemica Acta 71: 343–359.Google Scholar
Franck, R. 1694. Northern Memoirs, Calculated for the Meridian of Scotland. . .. Henry Mortclock, London. (Written 1658.)Google Scholar
Frankignoulle, M. and Borges, A. V.. 2001. Direct and indirect pCO2 measurements in a wide range of pCO2 and salinity values (the Schelt estuary). Aquatic Geochemistry 7: 267–273.CrossRefGoogle Scholar
Friedlander, G., Kennedy, J. W., and Miller, J. M.. 1981. Nuclear and Radiochemistry, 3rd edn. John Wiley & Sons, New York.Google Scholar
Froelich, P. N. 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnol. Oceanogr. 33: 649–668.Google Scholar
Froelich, P. N. and Andreae, M. O.. 1981. The marine geochemistry of germanium: Ekasilicon. Science 213: 205–207.CrossRefGoogle ScholarPubMed
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., et al. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43: 1075–1090.CrossRefGoogle Scholar
Froelich, P. N., Bender, M. L., Luedtke, N. A., Heath, G. R., and DeVries, T.. 1982. The marine phosphorus cycle. Am. J. Sci. 282: 474–511.CrossRefGoogle Scholar
Froelich, P. N., Mortlock, R. A., and Shemesh, A.. 1989. Inorganic germanium and silica in the Indian Ocean: biological fractionation during (Ge/Si)OPAL formation. Global Biogeochem. Cycles 3: 79–88.CrossRefGoogle Scholar
Fry, B. 2006. Stable Isotope Ecology. Springer, New York.CrossRefGoogle Scholar
Fukuyama, H. 1985. Heat of fusion of basaltic magma. Earth Planet. Sci. Lett. 73: 407–414.CrossRefGoogle Scholar
Fulweiler, R. W., Nixon, S. W., Buckley, B. A., and Granger, S. L.. 2007. Reversal of the net nitrogen gas flux in coastal marine sediments. Nature 448: 180–182.CrossRefGoogle ScholarPubMed
Galloway, J. N., Dentener, F. J., Capone, D. G., et al. 2004. Nitrogen cycles: past, present, and future. Biogeochemistrry 70: 153–226.CrossRefGoogle Scholar
Galloway, J. N., Townsend, A. R., Erisman, J. W., et al . 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320: 889–892.CrossRefGoogle ScholarPubMed
Ganachaud, A. and Wunsch, C.. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408: 453–457.CrossRefGoogle ScholarPubMed
García, H. E. and Gordon, L. I.. 1992. Oxygen solubility in seawater: better fitting equations. Limnol. Oceanogr. 37: 1307–1312.CrossRefGoogle Scholar
Garrels, R. M. and Thompson, M. E.. 1962. A chemical model for seawater at 25°C and one atmosphere total pressure. Am. J. Sci. 260: 57–66.CrossRefGoogle Scholar
Garrels, R. M., Thompson, M. E., and Siever, R.. 1961. Control of carbonate solubility by carbonate complexes. Am. J. Sci. 259: 24–45.CrossRefGoogle Scholar
Garrett, W. D. 1967. The organic chemical composition of the ocean surface. Deep-Sea Res. 14: 221–227.Google Scholar
Gay-Lussac, J. L. 1817. Note sur la salure de l’Océan atlantique. (Also: Supplement to this note.)Ann. Chim. Phys., Sér. 2 6: 426–436; 7: 79–83.Google Scholar
Gay-Lussac, J. L. 1819. Premier mémoire sur la dissolubilité des sels dans l’eau. Ann. Chim. Phys., Sér. 2, 11: 296–315.Google Scholar
Gerlach, T. 2011. Volcanic versus anthropogenic carbon dioxide. EOS 92 (24): 201–202.CrossRefGoogle Scholar
German, C. R. and Von Damm, K. L.. 2006. Hydrothermal processes. In The Oceans and Marine Geochemistry, ed. Elderfield, H. (Treatise on Geochemistry, vol. 6, ed. Holland, H. D. and Turekian, K. K.). Elsevier, New York, pp. 181–222.Google Scholar
Gieskes, J. M. 1983. The chemistry of interstitial waters of deep sea sediments: interpretation of deep sea drilling data. In Chemical Oceanography, vol. 8, ed Riley, J. P. and Chester, R.. Academic Press, New York.Google Scholar
Gieskes, J. M., Elderfield, H., Lawrence, J. R., and LaKind, J.. 1984. Interstitial water studies, Leg 78A. in Init. Repts. DSDP, 78A. ed Biju-Duval, B., Moore, J. C., et al. U.S. Govt. Printing Office, Washington, D.C., pp. 377–384.Google Scholar
Gill, G. A. and Fitzgerald, W. F.. 1988. Vertical mercury distributions in the oceans. Geochim. Cosmochim. Acta 52: 1719–1728.CrossRefGoogle Scholar
Girard, G. and Menaché, M.. 1971. Variation de la masse volumique de l’eau en fonction de sa composition isotopique. Metrologia 7: 83–87.CrossRefGoogle Scholar
Girard, G. and Menaché, M.. 1972. Sur le calcul de la masse volumique de l’eau. C. R. Acad. Sci., Ser. B 274: 377–379.Google Scholar
Gist, N. and Lewis, A. C.. 2006. Seasonal variations of dissolved alkenes in coastal waters. Mar. Chem. 100: 1–10.CrossRefGoogle Scholar
Glueckauf, E. 1951. The composition of atmospheric air. In Compendium of Meteorology, ed. Malone, Thomas E.. American Meteorological Society, Boston, MA, pp. 3–10.CrossRefGoogle Scholar
Goering, J. J. and Cline, J. D.. 1970. A note on denitrification in seawater. Limnol. Oceanogr. 15: 306–309.CrossRefGoogle Scholar
Goldberg, E. D. 1963. The oceans as a chemical system. In The Sea; Ideas and Observations on Progress in the Study of the Seas, vol. 2, ed. Hill, M. N.. Interscience, New York, pp. 3–25.Google Scholar
Goldberg, E. D. 1985. Black Carbon in the Environment: Properties and Distribution. Wiley, New York,Google Scholar
Goldberg, E. D. 1987. Heavy metal analyses in the marine environment – approaches to quality control. Mar. Chem. 22: 117–124.CrossRefGoogle Scholar
Goldblatt, C., Claire, M. W., and Lenton, T. M, et al. 2009. Nitrogen-enhanced greenhouse warming on early Earth. Nature Geoscience 2: 891–896.CrossRefGoogle Scholar
Goldhammer, T., Brüchert, V., Ferdelman, T. G., and Zabel, M.. 2010. Microbial sequestration of phosphorus in anoxic upwelling sediments, Nature Geoscience 3: 557–561.CrossRefGoogle Scholar
Goldman, D. T. and Bell, R. J.. 1981. The International System of Units (SI). National Bureau Stds. (U.S.), Spec. Publ. 330, U.S. Govt. Printing Office, Washington, D.CCrossRefGoogle Scholar
Gonfiantini, R. 1978. Standards for stable isotope measurements in natural compounds. Nature 271: 534–536.CrossRefGoogle Scholar
Goñi, M. A., Hartz, D. M., Thunell, R. C., and Tappa, E.. 2001. Oceanographic considerations for the application of the alkenone-based paleotemperature Uk′37 index in the Gulf of California. Geochim. Cosmochim. Acta 65: 545–557.CrossRef
Graedel, T. E. 1978. Chemical Compounds in the Atmosphere. Academic Press, New York.Google Scholar
Gran, H. H. 1931. On the conditions for the production of plankton in the sea. Rapp. Proc. Verb. Cons. Int. Explor. Mer. 75: 37–46.Google Scholar
Grasshoff, K. 1975. The hydrogeochemistry of landlocked basins and fjords. In Chemical Oceanography, 2nd edn., vol. 2, ed Riley, J. P. and Skirrow, G.. Academic Press, New York, pp. 455–597.Google Scholar
Grasshoff, K., Kremling, K., and Ehrhardt, M., eds. 1999. Methods of Seawater Analysis, 3rd edn. Wiley-VCH, New York.CrossRefGoogle Scholar
Greenwald, I. 1941. The dissociation of Ca and Mg carbonates and bicarbonates. J. Biol. Chem. 141: 789–796.Google Scholar
Grose, T. J., Johnson, J. A., and Bigg, G. R.. 1995. A comparison between the FRAM (Fine Resolution Antarctic Model) results and observations in the Drake Passage. Deep-Sea Res. 42: 365–388.CrossRefGoogle Scholar
Grosso, P., Le Menn, M., e La Tocnaye, J. -L. D. B. D, Wu, Z. Y., and Malardé, D.. 2010. Practical versus absolute salinity measurement: new advances in high performance seawater salinity sensors. Deep-Sea Res. I 57: 151–156.CrossRefGoogle Scholar
Haar, L., Gallagher, J. S., and Kell, G. S.. 1984. NBS/NRC Steam Tables. Hemisphere Publishing Corporation, Washington, DC.Google Scholar
Hagemann, R., Nief, G., and Roth, E.. 1970. Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW. Tellus 22: 712–715.CrossRefGoogle Scholar
Halley, E. 1687. An estimate of the quantity of vapour raised out of the sea by the warmth of the sun; derived from an experiment shown before the Royal society, at one of their late meetings. Phil. Trans. R. Soc. 16: 366–370.CrossRefGoogle Scholar
Halley, E. 1715. A short account of the cause of the saltness of the ocean, and of several lakes that emit no rivers; with a proposal, by the help thereof, to discover the age of the world. Phil. Trans. R. Soc. 29: 296–300.CrossRefGoogle Scholar
Hamme, R. C. and Emerson, S. R.. 2002. Mechanisms controllong the global distribution of the inert gases argon, nitrogen and neon, Geophys. Res. Lett. 29: CrossRefGoogle Scholar
Hamme, R. C and Emerson, S. R.. 2004. The solubility of neon, nitrogen and argon in distilled water and seawater. Deep-Sea Res. 1 51: 1517–1528.CrossRefGoogle Scholar
Hammond, D. E., McManus, J., Berelson, W. M., Kilgore, T. E., and Pope, R. H.. 1996. Early diagenesis of organic material in equatorial Pacific sediments: stoichiometry and kinetics. Deep-Sea Res. II 43: 1365–1412.CrossRefGoogle Scholar
Han, M. W. and Suess, E.. 1989. Subduction-induced pore fluid venting and the formation of authigenic carbonates along the Cascadia continental margin: implications for the global Ca-cycle. Palaeogeogr., Palaeoclimat., Palaeoecol. 71: 97–118.CrossRefGoogle Scholar
Hansen, J., Saito, M., Kharecha, P., et al. 2008. Target atmospheric CO2: where should humanity aim?The Open Atmos. Sci. J. 2: 217–231.CrossRefGoogle Scholar
Hansen, J. E. and Lacis, A. A.. 1990. Sun and dust versus greenhouse gases: an assessment of their relative roles in global climate change. Nature 346: 713–719.CrossRefGoogle Scholar
Hanson, P. J., Lindberg, S. E., Tabberer, T. A., Owens, J. G., and Kim, K. -H.. 1995. Foliar exchange of mercury vapor: evidence for a compensation point. Water, Air, Soil Poll. 80: 373–382.CrossRefGoogle Scholar
Hardie, L. A. 1996. Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24: 279–283.2.3.CO;2>CrossRefGoogle Scholar
Harvey, G. R., Boran, D. A., Chesal, L. A., and Tokar, J. M.. 1983. The structure of marine fulvic and humic acids. Mar. Chem. 12: 119–132.CrossRefGoogle Scholar
Harvey, H. W. 1937. The supply of iron to diatoms. J. Mar. Biol. Ass. UK 22: 205–219.CrossRefGoogle Scholar
Harvey, H. W. 1957. The Chemistry and Fertility of Seawater. 2nd Ed. Cambridge Univ. Press, London.Google Scholar
Harvie, C. E., Weare, J. H., Hardie, L. A., and Eugster, H. P.. 1980. Evaporation of seawater: calculated mineral sequences. Science 208: 498–500.Google Scholar
Hay, W. W. 1985. Potential errors in estimates of carbonate rock accumulating through geologic time. In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, ed Sundquist, E. T. and Broecker, W. S.. American Geophysical Union, Washington, DC, pp. 573–583.Google Scholar
Hayes, J. M. 2002. Practice and Principles of Isotopic Measurements in Organic Geochemistry. See: .
Haynes, W. M, ed. 2011. CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton, FL.Google Scholar
Heath, G. R. 1974. Dissolved silica and deep-sea sediments. In Studies in Paleo-Oceanography, ed. Hay, W. W.. Society of. Economic Paleontologists and Mineralogists, Special Publication No. 20, Tulsa, OK, pp. 77–93.CrossRefGoogle Scholar
Henry, W. 1803. Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Phil. Trans. R. Soc. 93: 29–42, 274–276.CrossRefGoogle Scholar
Herbert, T. D. 2006. Alkenone paleotemperature determinations. In The Oceans and Marine Geochemistry, ed. Elderfield, H. (Treatise on Geochemistry, vol. 6, ed. Holland, H. D. and Turekian, K. K.). Elsevier, New York, pp 391–432.Google Scholar
Herrmann, A. G., Knake, D., Schneider, J., and Peters, H.. 1973. Geochemistry of modern seawater and brines from salt pans: main components and bromine distribution. Contr. Mineral. Petrol. 40: 1–24.CrossRefGoogle Scholar
Hester, K. C., Peltzer, E. T., Kirkwood, W. J., and Brewer, P. G.. 2008. Unanticipated consequences of ocean acidification: a noisier ocean. Geophys. Res. Lett. 35: L9601, .CrossRefGoogle Scholar
Hillis-Colinvaux, L. 1980. Ecology and taxonomy of Halimeda: primary producer of coral reefs. Adv. Mar. Biol. 17: 1–327.CrossRefGoogle Scholar
Hinga, K. R. 1988. Seasonal predictions for pollutant scavenging in two coastal environments using a model calibration based upon thorium scavenging. Mar. Environ. Res. 26: 97–112.CrossRefGoogle Scholar
Hinga, K. R. 2002. Effects of pH on coastal marine phytoplankton. Mar. Ecol. Prog. Series 238: 281–300.CrossRefGoogle Scholar
Holland, H. D. 1972. The geologic history of seawater – an attempt to solve the problem. Geochim. Cosmochim. Acta 36: 637–651.CrossRefGoogle Scholar
Holland, H. D. 1978. The Chemistry of the Atmosphere and Oceans. John Wiley & Sons, New York.Google Scholar
Holland, H. D. 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press, Princeton, NJ.Google Scholar
Holland, H. D. 2006. The geologic history of seawater. In The Oceans and Marine Geochemistry, ed. Elderfield, H. (Treatise on Geochemistry, vol. 6, ed. Holland, H. D. and Turekian, K. K.). Elsevier, New York, pp. 583–625.Google Scholar
Holm, N. G. 1996. Hydrothermal activity and the volume of the oceans. Deep-Sea Res. 43: 47–52.Google Scholar
Holmes, A. 1913. The Age of the Earth. Harper, New York.Google Scholar
Honjo, S., Manganini, S. J., Krishfield, R. A., and Francois, R.. 2008. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog. Oceanogr. 76: 217–285.CrossRefGoogle Scholar
Horibe, Y., Keiko, E., and Tsubota, H.. 1974. Calcium in the South Pacific, and its correlation with carbonate alkalinity. Earth Planet. Sci. Lett. 23: 136–140.CrossRefGoogle Scholar
Horita, J. and Gat, J. R.. 1989. Deuterium in the Dead Sea: remeasurement and implications for the isotopic activity correction in brines. Geochim. Cosmochim. Acta 45: 131–133.CrossRefGoogle Scholar
Horiguchi, M. and Kandatsu, M.. 1959. Isolation of 2-aminoethane phosphonic acid from rumen protozoa. Nature 184: 901–902.CrossRefGoogle ScholarPubMed
Houghton, R. A. 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B 55: 378–390.Google Scholar
Hsü, K. J., Cita, M. B., and Ryan, W. B. F.. 1973. The Origin of the Mediterranean Evaporite. Initial Reports of the Deep Sea Drilling Project, vol. XIII, ed. Ryan, W. B. F. and Hsü, K. J.. US Government Printing Office, Washington, DC, pp. 1203–1231.Google Scholar
Hu, M., Yang, Y., Martin, J. M., Yin, K., and Harrison, P. J.. 1996. Preferential uptake of Se(IV) over Se(VI) and the production of dissolved organic Se by marine phytoplankton. Mar. Environ. Res. 44: 225–231.CrossRefGoogle Scholar
Hudson, R. J. M., Gherini, S. A., Fitzgerald, W. F., and Porcella, D. B.. 1995. Anthropogenic influences on the global mercury cycle: a model-based approach. Water, Air, Soil Poll. 80: 265–272.CrossRefGoogle Scholar
Huizenga, D. L. and Kester, D. R.. 1979. Protonation equilibria of marine dissolved organic matter. Limnol. Oceanogr. 24: 145–150.CrossRefGoogle Scholar
Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., and Thompson, R. E., eds. 1995. Seafloor Hydrothermal Systems. American Geophysical Union, Washington, DC.Google Scholar
Hunten, D. M. and Donahue, T. M.. 1976. Hydrogen loss from terrestrial planets. Ann. Rev. Earth Planet. Sci. 4: 265–292.CrossRefGoogle Scholar
Hunter, K. A. and Liss, P. S.. 1981. Organic sea surface films. In Marine Organic Chemistry, ed. Duursma, E. K. and Dawson, R.. Elsevier, Amsterdam, pp. 259–298.Google Scholar
Hurd, D. C. 1983. Physical and chemical properties of siliceous skeletons. In Silicon Geochemistry and Biogeochemistry, ed Aston, S. R.. Academic Press, New York, pp. 187–244.Google Scholar
ICS. 2009. International Commission on Stratigraphy. International Stratigraphic Chart. See: . Accessed June 5, 2011.
Ingle, S. E. 1975. Solubility of calcite in the ocean. Mar. Chem. 3: 301–319.CrossRefGoogle Scholar
Ito, E., Harris, D. M., and Anderson, A. T., Jr. 1983. Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim. Cosmochim. Acta 47: 1613–1624.CrossRefGoogle Scholar
Jackson, G. A. and Williams, P. M.. 1985. The importance of dissolved organic nitrogen and phosphorus to biological nutrient cycling. Deep-Sea Res. 32: 223–235.CrossRefGoogle Scholar
Jacobsen, J. P. and Knudsen, M.. 1940. Urnormal 1937, or primary standard sea-water 1937. Int. Union Geodesy Geophys., Assoc. Phys. Oceanogr. Publ. Sci. 7: 1–38.Google Scholar
Jacobson, R. L. and Langmuir, D.. 1974. Dissociation constants of calcite and CaHCO3+ from 0 to 50°C. Geochim. Cosmochim. Acta 38: 301–318.CrossRefGoogle Scholar
Jähne, B., Heinz, G., and Dietrich, W.. 1987a. Measurement of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res. 92: 10,767–10,776.CrossRefGoogle Scholar
Jähne, B., Münnich, K. O., Bösinger, R., et al. 1987b. On the parameters influencing air-water gas exchange. J. Geophys. Res. 92: 1937–1949.CrossRefGoogle Scholar
Jensen, P. R., Gibson, R. A., Littler, M. M., and Littler, D. S.. 1985. Photosynthesis and calcification in four deepwater Halimeda species (Chlorophyceac, Caulerpales). Deep-Sea Res. 32: 451–464.CrossRefGoogle Scholar
Jickells, T. D., An, Z. S., Anderson, K. K., et al. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308: 67–71.CrossRefGoogle ScholarPubMed
Johnson, D. L. 1971. Simultaneous determination of arsenate and phosphate in natural waters. Environ. Sci. Technol. 5: 411–414.CrossRefGoogle Scholar
Johnson, D. L. 1972. Bacterial reduction in arsenate in seawater. Nature 240: 44–45.CrossRefGoogle Scholar
Johnson, K. S. 1982. Carbon dioxide hydration and dehydration kinetics in seawater. Limnol. Oceanogr. 27: 849–855.CrossRefGoogle Scholar
Johnson, K. S., Chavez, F. P., and Friederich, G. E.. 1999. Continental-shelf sediment as a primary source of iron for coastal phytoplankton. Nature 398: 697–700.CrossRefGoogle Scholar
Johnston, R. 1964. Sea water, the natural medium of phytoplankton. I. Trace metals and chelation, and general discussion. J. Mar. Biol. Ass. UK 44: 87–109.CrossRefGoogle Scholar
Jones, M. M. and Pytkowicz, R. M.. 1973. Solubility of silica in seawater at high pressures. Bull. Soc. R. Sci. Liege 42: 118–120.Google Scholar
Kahane, A., Klinger, J., and Philippe, M.. 1969. Dopage selectif de la Glace monocristalline avec de l’helium et du neon. Solid State Commun. 7: 1055–1056.CrossRefGoogle Scholar
Kalle, K. 1933. Zum Problem der Meereswasserfarbe. Annal.Hydrogr. Maritimen Meteorologie 66: 1–13.Google Scholar
Kanwisher, J. 1963. Effect of wind on CO2 exchange across the sea surface. J. Geophys. Res. 68: 3921–3927.CrossRefGoogle Scholar
Karl, D., McMurtry, G. M., Malahoff, A., and Garcia, M. O.. 1988. Loihi Seamount, Hawaii: a mid-plate volcano with a distinctive hydrothermal system. Nature 335: 532–535.CrossRefGoogle Scholar
Karl, D., Letellier, R., Tupas, L., et al. 1997. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388: 533–538.CrossRefGoogle Scholar
Karlén, I., Olsson, I. U., Kållberg, P., and Kilicci, S.. 1964. Absolute determination of the activity of two C14 dating standards. Arkiv för Geofysik 4(22): 465–471.Google Scholar
Kasting, J. F. and Holm, N. G.. 1992. What determines the volume of the oceans?Earth. Planet. Sci. Lett. 109: 507–515.CrossRefGoogle ScholarPubMed
Kastner, M., Elderfield, H., and Martin, J. B.. 1991. Fluids in convergent margins: what do we know about their composition, origin, role in diagenesis and importance for oceanic chemical fluxes?Phil. Trans. R. Soc. London A. 335: 243–259.CrossRefGoogle Scholar
Keeling, C. D. 1973. Industrial production of carbon dioxide from fossil fuels and limestone. Tellus 25: 174–198.CrossRefGoogle Scholar
Keeling, C. D. and Whorf, T. P.. 1994. Atmospheric CO2 records from sites in the SIO sampling network. In Trends ‘93: A Compendium of Data on Global Change, ed Boden, T. A., Kaiser, D. P., Sepanski, R. J., and Stoss, F. W.. ORNL/CDIAC-65, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, pp. 16–26.Google Scholar
Keeling, R. F. and Shertz, S. R.. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature 358: 723–727.CrossRefGoogle Scholar
Keeling, R. F., Piper, S. C., and Heimann, M.. 1996. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381: 218–221.CrossRefGoogle Scholar
Keir, R. S. 1980. The dissolution kinetics of biogenic calcium carbonates in seawater. Geochim. Cosmochim. Acta 44: 241–252.CrossRefGoogle Scholar
Kell, G. S. 1972. Effects of isotopic composition, temperature, pressure and dissolved gases on the density of liquid water. J. Phys. Chem. Ref. Data 6: 1109–1131.CrossRefGoogle Scholar
Kempe, S., Liebezit, G., Diercks, A., et al. 1988. Water column analysis. In Temporal and Spatial Vairability in Sedimentation in the Black Sea. Cruise Report, R/V Knorr 134–8, Black Sea Leg 1, April 16–May 7,1988, ed. Honjo, S. and Hay, B. J.. WHOI Technical Report 88–35, Woods Hole Oceanographic Institution, Woods Hole, MA, pp. 31–58.Google Scholar
Kennett, J. P. 1982. Marine Geology. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
Kern, D. M. 1960. The hydration of carbon dioxide. J. Chem. Educ. 37: 14–23.CrossRefGoogle Scholar
Kester, D. R. 1975. Dissolved gases other than CO2. In Chemical Oceanography, 2nd edn., vol. 1, ed Riley, J. P. and Skirrow, G.. Academic Press, New York, pp. 497–556.Google Scholar
Kim, J. P. and Fitzgerald, W. F.. 1986. Sea–air partitioning of mercury in the Equatorial Pacific Ocean. Science 231: 1131–1133.CrossRefGoogle ScholarPubMed
Kinsey, D. W. and Hopley, D.. 1991. The significance of coral reefs as global carbon sinks – response to Greenhouse. Paleogeogr. Paleoclim. Paleoecol. 89: 363–377.CrossRefGoogle Scholar
Kittredge, J. S. and Roberts, E.. 1969. A carbon–phosphorus bond in nature. Science 164: 37–42.CrossRefGoogle ScholarPubMed
Knauss, J. A. 1997. Introduction to Physical Oceanography, 2nd edn. Prentice-Hall, Upper Saddle River, New Jersey, NJGoogle Scholar
Knudsen, M., ed. 1902. Berichte uber die Konstantenbestimmungen zur Aufstellung der hydrographischen Tabellen. Kon. Danske Videnskab. Selsk. Skrifter, 6 Raekke, Naturvidensk. Mathemat., vol. XII. Includes chapters by C. Forch, M. Knudsen, and S. P. L. Sørensen.Google Scholar
Kolowith, L. C., Ingall, E. D., and Benner, R.. 2001. Composition and cycling of marine organic phosphorus. Limnol. Oceanogr. 46: 309–320CrossRefGoogle Scholar
Kornitnig, S. 1978. Phosphorus. In Handbook of Geochemistry, vol. 2, ed Wedephol, K. H.. Springer-Verlag, New York, pp. 15E1–15E9.Google Scholar
Korson, L., Drost-Hansen, W., and Millero, F. J.. 1969. Viscosity of water at various temperatures. J. Phys. Chem. 73: 34–39.CrossRefGoogle Scholar
Körtzinger, A., Hedges, J. I., and Quay, P. D.. 2001. Redfield ratios revisited: removing the biasing effect of anthropogenic CO2. Limnol. Oceanogr. 46: 964–970.CrossRefGoogle Scholar
Krogh, A. 1934. Conditions of life at great depths in the ocean. Ecological Monographs 4: 431–439.Google Scholar
Kuenen, J. G. 2008. Anammox bacteria: from discovery to application. Nature Rev. Microbiol. 6: 320–326.CrossRefGoogle Scholar
Lal, D. and Lee, T.. 1988. Cosmogenic 32P and 33P used as tracers to study phosphorus recycling in the upper ocean. Nature 333: 752–754.CrossRefGoogle Scholar
Lam, P., Lavik, G., Jensen, M. M., et al. 2009. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl. Acad. Sci. 106: 4752–4757.CrossRefGoogle ScholarPubMed
Lane, T. W., Saito, M. A., George, G. N., et al. (2005). A cadmium enzyme from a marine diatom. Nature 435: 42.CrossRefGoogle ScholarPubMed
Langdon, C., Takahashi, T., Sweeney, C., et al. 2000. Effect of calcium carbonate supersaturation state on the calcification rate of an experimental coral reef. Global Biogeochem. Cycles 14: 639–634.CrossRefGoogle Scholar
Langseth, M. G. and Moore, J. C.. 1990. Introduction to special section on the role of fluids in sediment accretion, deformation, diagenesis, and metamorphism in subduction zones. J. Geophys. Res. 95: 8737–8741.CrossRefGoogle Scholar
Larson, R. L. 1991. Latest pulse of Earth: evidence for a mid-Cretaceous superplume. Geology 19: 547–550.2.3.CO;2>CrossRefGoogle Scholar
Latif, M. A., Özsoy, E., Oguz, T., and Ünlüata, Ü.. 1991. Observations of the Mediterranean inflow into the Black Sea. Deep-Sea Res. 38(Suppl. 2): S711–S723.CrossRefGoogle Scholar
Lavoisier, A. L. 1772. Mémoire sur l’usage de l’esprit-de-vin dans l’analyse des eaux minerals. Mémoires de l’Académie Royale des Sciences de Paris, année 1772, pt. 2e, 555–563. (Published in 1776.)Google Scholar
Laws, E. A. 1991. Photosynthetic quotients, new production and net community production in the open ocean. Deep-Sea Res. 38: 143–167.CrossRefGoogle Scholar
Lawson, D. S., Hurd, D. C., and Pankratz, H. S.. 1978. Silica dissolution rates of decomposing phytoplankton assemblages at various temperatures. Am. J. Sci. 278: 1373–1393.CrossRefGoogle Scholar
Le Pichon, X., Kobayashi, K., and Scientific Crew, Kaiko–Nankai. 1992 Fluid venting activity within the eastern Nankai Trough accretionary wedge: a summary of the 1989 Kaiko–Nankai results. Earth Planet. Sci. Lett. 109: 303–318.CrossRefGoogle Scholar
Le Pichon, X., Henry, P., and Lallemant, S.. 1993. Accretion and erosion in subduction zones: the role of fluids. Ann. Rev. Earth Planet. Sci. 21: 307–331.CrossRefGoogle Scholar
Leclercq, N., Gattuso, J. -P., and Jaubert, J.. 2000. CO2 partial pressure controls the calcification rate of a coral community. Global Change Biology 6: 329–334.CrossRefGoogle Scholar
Ledwell, J. J. 1984. The variation of the gas transfer coefficient with molecular diffusivity. In Gas Transfer at Water Surfaces, ed Brutsaert, W. and Jirka, G. H.. Reidel, D.Publishing Co., Hingham, MA, pp. 293–302.CrossRefGoogle Scholar
Lee, C. and Bada, J. L.. 1975. Amino acids in equatorial Pacific Ocean water. Earth Planet. Sci. Lett. 26: 61–68.CrossRefGoogle Scholar
Lee, C. and Wakeham, S. G.. 1989. Organic matter in seawater; biogoechemical processes. In Chemical Oceanography, 2nd edn., vol. 9, ed. Riley, J. P.. Academic Press, New York, pp. 1–51.Google Scholar
Lee, C. and Wakeham, S. G.. 1992. Organic matter in the water column: future research challenges. Mar. Chem. 39: 95–118.CrossRefGoogle Scholar
Lee, D. S. and Edmond, J. M.. 1985. Tellurium species in seawater. Nature 313: 782–785.CrossRefGoogle Scholar
Lee, D. S., Edmond, J. M., and Bruland, K. W.. 1986. Bismuth in the Atlantic and North Pacific: a natural analogue to plutonium and lead?Earth Planet. Sci. Lett. 76: 254–262.Google Scholar
Lee, J. G., Roberts, S. B., and Morel, F. M. M.. 1995. Cadmium: a nutrient for the marine diatomThalassiosira weissflogii. Limnol. Oceanogr. 40: 1056–1063.CrossRefGoogle Scholar
Levitus, S. 1982. Climatological Atlas of the World Ocean. Professional Paper 13. National Oceanic and Atmospheric Administration, Washington, DC.Google Scholar
Levitus, S. and Boyer, T. P.. 1994a. World Ocean Atlas 1994, Vol. 2: Oxygen. National Oceanic and Atmospheric Administration, USDepartment of Commerce, Washington, DC.Google Scholar
Levitus, S. and Boyer, T. P.. 1994b. World Ocean Atlas 1994, Vol. 4: Temperature. National Oceanic and Atmospheric Administration, USDepartment of Commerce, Washington, DC.Google Scholar
Levitus, S., Burgett, R., and Boyer, T. P., 1994. World Ocean Atlas 1994, Vol. 3: Salinity. National Oceanic and Atmospheric Administration, USDepartment of Commerce, Washington, DC.Google Scholar
Lewis, B. L., Froelich, P. N., and Andreae, M. O.. 1985. Methylgermanium in natural waters. Nature 313: 303–305.CrossRefGoogle Scholar
Lewis, B. L., Andreae, M. O., and Froelich, P. N.. 1989. Sources and sinks of methylgermanium in natural waters. Mar. Chem. 27: 179–200.CrossRefGoogle Scholar
Lewis, E. L. 1980. The practical salinity scale 1978 and its antecedents. IEEE J. Oceanic Eng. OE- 5: 3–21.CrossRefGoogle Scholar
Lewis, E. L. and Perkin, R. G.. 1978. Salinity: its definition and calculation. J. Geophys. Res. 83: 466–478.CrossRefGoogle Scholar
Lewis, G. N. and Randall, M.. 1921. The activity coefficient of strong electrolytes. J. Am. Chem. Soc. 43: 1112–1154.CrossRefGoogle Scholar
Lhomme, N., Clarke, G. K. C., and Ritz, C.. 2005. Global budget of water isotopes inferred from polar ice sheets. Geophys. Res. Lett. 32: L20502.CrossRefGoogle Scholar
Lieth, H. and Whittaker, R. H., eds. 1975. Primary Productivity of the Biosphere. Springer-Verlag, New York.CrossRefGoogle Scholar
Liss, P. S. and Merlivat, L.. 1986. Air–sea gas exchange rates: introduction and synthesis. In The Role of Air-Sea Exchange in Geochemical Cycling, ed. Buat-Ménard, P.. D. Reidel Publishing Co., Hingham, MA, pp. 113–129.CrossRefGoogle Scholar
Liss, P. S. and Slater, P. G.. 1974. Flux of gases across the air-sea interface. Nature 247: 181–184.CrossRefGoogle Scholar
Liu, K., Brown, M. G., Cruzan, J. D., and Saykally, R. J.. 1996. Vibration–rotation tunneling spectra of the water pentamer: structure and dynamics. Science 271: 62–64.CrossRefGoogle Scholar
Liu, X. and Millero, F. J.. 2002. The solubility of iron in seawater. Mar. Chem. 77: 43–54.CrossRefGoogle Scholar
Llewellyn, T. O. 1994. Phosphate Rock 1993. US Department of the Interior, Bureau of Mines, Washington, DC.Google Scholar
Loring, D. H. and Rantala, R. T. T.. 1988. An intercalibration exercise for trace metals in marine sediments. Mar. Chem. 24: 13–28.CrossRefGoogle Scholar
Love, S. G. and Brownlee, D. E.. 1993. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262: 550–553.CrossRefGoogle ScholarPubMed
LutherIII, G. W., Church, T. M., and Powell, D.. 1991. Sulfur speciation and sulfide oxidation in the water column of the Black Sea. Deep-Sea Res. 38 (Suppl. 2): S1121–S1137.CrossRefGoogle Scholar
Lutz, R. A. and Kennish, M. J.. 1993. Ecology of deep-sea hydrothermal vent communities: A review. Rev. Geophys. 31: 211–242.CrossRefGoogle Scholar
Lyman, J. 1956. Buffer mechanism of seawater. Ph.D. Thesis, University of California, Los Angeles, CA.
Macdonald, R. W., Paton, D. W., and Carmack, E. C.. 1995. The freshwater budget and under-ice spreading of Mackenzie River water in the Canadian Beaufort Sea based on salinity and 18O/16O measurements in water and ice. J. Geophys. Res. 100: 895–919.CrossRefGoogle Scholar
MacIntyre, F. 1974a. The top millimeter of the ocean. Sci. Am. 230: 62–77.CrossRefGoogle Scholar
MacIntyre, F. 1974b. Chemical fractionation and seasurface microlayer processes. In The Sea, vol. 5, ed. Goldberg, E. D.. John Wiley & Sons, New York.Google Scholar
Mackenzie, F. T., Garrels, R. M., Bricker, O. P., and Bickley, F.. 1967. Silica in seawater: control by silica minerals. Science 155: 1404–1405.CrossRefGoogle Scholar
Majoube, M. 1971. Fractionnement en oxygène 18 et en deutérium entre l’eau et sa vapeur. J. de chim. phys. 68: 1423–1436.CrossRefGoogle Scholar
Maldonado, M. T. and Price, N. M.. 1996. Influence of N substrate on Fe requirements of marine centric diatoms. Mar. Ecol. Prog. Series 141: 161–172.CrossRefGoogle Scholar
Manning, A. C. and Keeling, R. F.. 2006. Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus B 58: 95–116.CrossRefGoogle Scholar
Mantoura, R. F. C. and Woodward, E. M. S.. 1983. Conservative behavior of riverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implications. Geochim. Cosmochim. Acta 47: 1293–1309.CrossRefGoogle Scholar
Marcet, A. 1819. On the specific gravity, and temperature, in different parts of the ocean, and in particular seas; with some account of their saline contents. Phil. Trans. R. Soc. London 109: 161–208.CrossRefGoogle Scholar
Marsilli, L. F. 1681. Osservazioni Intorno al Bosforo Tracio overo Canale di Constantinopoli, Rappresentate in Lettera alla Sacra Real Maestá Cristina Regina di Svecia da Luigi Ferdinando Marsilii. Nicolò Angelo Tinassi, Rome. 108 pp. (See Soffientino and Pilson 2009.)Google Scholar
Marsilli, L. F. 1725. Histoire Physique de la Mer. De’pens, Amsterdam. 40 pl. + 173 pp.Google Scholar
Martin, J. H. and Fitzwater, S. E.. 1988. Iron deficiency limits phytoplankton growth in the norteast Pacific subarctic. Nature 331: 341–343.CrossRefGoogle Scholar
Martin, J. H. and Gordon, R. M.. 1988. Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep-Sea Res. 35: 177–196.CrossRefGoogle Scholar
Martin, J. H., Knauer, G. A., and Gordon, R. M.. 1983. Silver distribution an fluxes in north-east Pacific waters. Nature 305: 306–309.CrossRefGoogle Scholar
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.. 1987. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. 34: 267–285.CrossRefGoogle Scholar
Martin, J. H., Gordon, R. M., Fitzwater, S., and Broenkow, W. W.. 1989. VERTEX – phytoplankton studies in the Gulf of Alaska. Deep-Sea Res. I 36: 649–680.CrossRefGoogle Scholar
Masiello, C. A. and Druffel, E. R. M.. 1998. Black carbon in deep-sea sediments. Science 280: 1911–1913.CrossRefGoogle ScholarPubMed
Mason, R. P. and Fitzgerald, W. F.. 1990. Alkylmercury species in the equatorial Pacific. Nature 347: 457–459.CrossRefGoogle Scholar
Mason, R. P. and Fitzgerald, W. F.. 1993. The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean. Deep-Sea Res. 40: 1897–1924.CrossRefGoogle Scholar
Mason, R. P., Fitzgerald, W. F., Hurley, J., et al. 1993. Mercury biogeochemical cycling in a stratified estuary. Limnol. Oceanogr. 38: 1227–1241.CrossRefGoogle Scholar
Mason, R. P., Fitzgerald, W. F., and Morel, F. M. M.. 1994. The biogeochemical cycling of elemental mercury: anthropogenic influence. Geochim. Cosmochim. Acta 58: 3191–3198.CrossRefGoogle Scholar
Mason, R. P., Reinfelder, J. R., and Morel, F. M. M.. 1996. Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ. Sci. Technol. 30: 1835–1845.CrossRefGoogle Scholar
Mason, R. P., Rolfhus, K. R., and Fitzgerald, W. F.. 1998. Mercury in the North Atlantic. Mar. Chem, 61: 37–53.CrossRefGoogle Scholar
Maury, M. F. 1855. The Physical Geography of the Sea. Harper & Brothers, New York.CrossRefGoogle Scholar
McCarthy, M. D., Hedges, J. I., and Benner, R.. 1998. Major bacterial contribution to marine dissolved nitrogen. Science 281: 231–234.CrossRefGoogle Scholar
McElligott, S. and Byrne, R. H.. 1998. Interaction of B(OH)30 and HCO3− in seawater: formation of B(OH)2CO3−. Aquatic Geochemistry 3: 345–356.CrossRefGoogle Scholar
McKelvey, B. A. and Orians, K. J.. 1993. Dissolved zirconium in the North Pacific Ocean. Geochim. Cosmochim. Acta 57: 3801–3805.CrossRefGoogle Scholar
McKillop, H. 2002. Salt, White Gold of the Ancient Maya. UniversityPress of Florida, Gainsville, FL.Google Scholar
McManus, J., Hammond, D. E., Cummins, K., Klinkhammer, G. P., and Berelson, W. M.. 2003. Diagenetic Ge–Si fractionation in continental margin environments: further evidence for a nonopal Ge sink. Geochim. Cosmochim. Acta. 67: 4545–4557.CrossRefGoogle Scholar
McNeil, C. 2006. Undersaturation of inert gases at the ocean surface: a thermal pumping mechanism. Geophys. Res. Lett. 33: LO1607, .CrossRefGoogle Scholar
Measures, C. I., Grant, B. C., Mangum, B. J., and Edmond, J. M.. 1983. The relationship of the distribution of dissolved selenium IV and VI in three oceans to physical and biological processes. In Trace Metals in Sea Water, ed. Wong, C. S., Boyle, E., Bruland, K. W., Burton, J. D., and Goldberg, E. D.. Plenum Press, New York, pp. 73–83.CrossRefGoogle Scholar
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M.. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18: 897–907.CrossRefGoogle Scholar
Menaché, M. and Girard, G.. 1970. Étude de la variation de la masse volumique de l’eau en fonction de sa composition isotopique. C. R. Acad. Sci., Ser. B 270: 1513–1516.Google Scholar
Menaché, M., Crease, J., Girard, G., and Montgomery, R. B.. 1979. SUN Report on the use in physical sciences of the ocean of the Systeme International d’Unites (SI) and related standards for symbols and terminology. (Adopted at the XVII General Assembly of IAPSO.) IUGG Publishing Office, Paris.Google Scholar
Menard, H. W. and Smith, S. M.. 1966. Hypsometry of the ocean basin provinces. J. Geophys. Res. 71: 4305–4325.CrossRefGoogle Scholar
Menzel, D. W. and Spaeth, J. P.. 1962. Occurrence of vitamin B12 in the Sargasso Sea. Limnol. Oceanogr. 7: 151–154.CrossRefGoogle Scholar
Menzel, D. W. and Vaccaro, R.. 1964. Measurement of dissolved organic and particulate carbon in sea water. Limnol. Oceanogr. 9: 138–142.CrossRefGoogle Scholar
Merlivat, L., Pineau, F., and Javoy, M.. 1987. Hydrothermal vent waters at 13º N on the East Pacific Rise: isotopic composition and gas concentration. Earth Planet. Sci Lett. 84: 100–108.CrossRefGoogle Scholar
Mero, J. L. 1965. The Mineral Resources of the Sea. Elsevier, New York.Google Scholar
Meybeck, M. 1979. Concentration des eaux fluviales en éléments majeurs et apports en solution aux océans. Rev. Geol. Dynam. Geog. Phys. 21: 215–246.Google Scholar
Meybeck, M. 1982. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282: 401–450.CrossRefGoogle Scholar
Meybeck, M. and Helmer, R.. 1989. The quality of rivers: from pristine stage to global pollution. Global Planet. Change 1: 283–309.CrossRefGoogle Scholar
Meyers-Schulte, K. J. and Hedges, J. I.. 1986. Molecular evidence for a terrestrial component of organic matter dissolved in ocean water. Nature 321: 61–63.CrossRefGoogle Scholar
Middleburg, J. J., Hoede, D., Van Der Sloot, H. A., Van Der Weijden, C. H., and Wijkstra, J.. 1988. Arsenic, antimony and vanadium in the North Atlantic Ocean. Geochem. Cosmochim. Acta. 52: 2871–2878.Google Scholar
Milkov, A. V. 2004. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?Earth-Science Rev. 66: 183–197.CrossRefGoogle Scholar
Miller, C. E. and Marinelli, L. D.. 1956. Gamma-ray activity of contemporary man. Science 124: 122–123.CrossRefGoogle ScholarPubMed
Miller, S. L. 1974. The nature and occurrence of clathrate hydrates. In Natural Gases in Marine Sediments, ed. Kaplan, I. R.. Plenum Press, New York, pp 151–177.CrossRefGoogle Scholar
Millero, F. J. 1974. Seawater as a multicomponent electrolyte solution. In The Sea, vol. 5, ed. Goldberg, E. D.. John Wiley & Sons, New York, pp. 3–90.Google Scholar
Millero, F. J. 1979. The thermodynamics of the carbonate system in seawater. Geochim. Cosmochim. Acta 43: 1651–1661.CrossRefGoogle Scholar
Millero, F. J. 1983. Influence of pressure on chemical processes in the sea. In Chemical Oceanography, 2nd edn., vol. 8, ed Riley, J. P. and Chester, R.. Academic Press, New York, pp. 1–88.Google Scholar
Millero, F. J. 1991. The oxidation of H2S in Black Sea waters. Deep-Sea Res. 38 (Suppl. 2): S1139–S1150.CrossRefGoogle Scholar
Millero, F. J. 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochim. Cosmochim. Acta 59: 661–677.CrossRefGoogle Scholar
Millero, F. J. 2010. Carbonate constants for estuarine waters. Mar. Freshwater Res. 61: 139–142.CrossRefGoogle Scholar
Millero, F. J. and Leung, W. H.. 1976. The thermodynamics of seawater at one atmosphere. Amer. J. Sci. 276: 1035–1077.CrossRefGoogle Scholar
Millero, F. J. and Poisson, A.. 1981. International One Atmosphere Equation of State for Seawater. Deep-Sea Res. 28A: 625–629.CrossRefGoogle Scholar
Millero, F. J. and Schreiber, D. R.. 1982. Use of the ion pairing model to estimate the activity coefficients of the ionic components of natural waters. Am. J. Sci. 282: 1508–1540.CrossRefGoogle Scholar
Millero, F. J., Perron, G., and Desnoyers, J. F.. 1973. Heat capacity of seawater solutions from 5 to 35 °C and 0.5 to 22‰ chlorinity. J. Geophys. Res 78: 4499–4506.CrossRefGoogle Scholar
Millero, F. J., Chen, C. -T., Bradshaw, A., and Schleicher, K.. 1980. A new high-pressure equation of state for seawater. Deep-Sea Res. 27A: 255–264.CrossRefGoogle Scholar
Millero, F. J., Plese, T., and Fernandez, M.. 1988. The dissociation of hydrogen sulfide in seawater. Limnol. Oceanogr. 33: 269–274.CrossRefGoogle Scholar
Millero, F. J., Zhang, J. -Z., Fiol, S., et al. 1993. The use of buffers to measure the pH of seawater. Mar. Chem. 44: 143–152.CrossRefGoogle Scholar
Millero, F. J., Lee, K., and Roche, M.. 1998. Distribution of alkalinity in the surface waters of the major oceans. Mar. Chem. 60: 111–130.CrossRefGoogle Scholar
Millero, F. J., Pierrot, D., Lee, K., et al. 2002. Dissociation constants for carbonic acid determined from field measurements. Deep-Sea Res. I 49: 1705–1723.CrossRefGoogle Scholar
Millero, F. J., Feistel, R., Wright, D. G., and McDougall, T. J.. 2008. The composition of Standard Seawater and the definition of the Reference-Composition Salinity scale. Deep-SeaRes. I 55: 50–72.Google Scholar
Milliman, J. D. 1993. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochem. Cycles 7: 927–957.CrossRefGoogle Scholar
Milliman, J. D. and Droxler, A. W.. 1995. Calcium carbonate sedimentation in the global ocean: linkages between the neritic and pelagic environments. Oceanography 8: 92–94.CrossRefGoogle Scholar
Milliman, J. D. and Meade, R. H.. 1983. World-wide delivery of river sediment to the oceans. J. Geol. 91: 1–21.CrossRefGoogle Scholar
Milliman, J. D. and Syvitski, J. P. M.. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100: 525–544.CrossRefGoogle Scholar
Miyake, Y. and Koizumi, M.. 1948. The measurement of the viscosity coefficient of sea water. J. Mar. Res. 7: 63–66.Google Scholar
Monahan, E. C. and O’Muircheartaigh, I. G.. 1986. Whitecaps and passive remote sensing of the ocean surface. Int. J. Remote Sensing 7: 627–642.CrossRefGoogle Scholar
Montgomery, R. B. 1958. Water characteristics of Atlantic Ocean and of world oceans. Deep-Sea Res. 5: 134–148.Google Scholar
Montoya, J. P., Holl, C. M., Zehr, J. P., et al. 2004. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430: 1027–1031.CrossRefGoogle ScholarPubMed
Moore, J. C. and Vrolijk, P.. 1992. Fluids in accretionary prisms. Rev. Geophys. 30: 113–135.CrossRefGoogle Scholar
Moore, R. M. and Tokarczyk, R.. 1993. Volatile biogenic halocarbons in the Northwest Atlantic. Global Biogeochem. Cycles 7: 195–210.CrossRefGoogle Scholar
Mopper, K., Dawson, R., Liebezeit, G., and Ittekkot, V.. 1980. The monosaccharide spectra of natural waters. Mar. Chem. 10: 55–66.CrossRefGoogle Scholar
Mopper, K., Zhou, X., Kieber, R. J., et al. 1991. Photochemical degredation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353: 60–62.CrossRefGoogle Scholar
Morey, G. W., Fournier, R. O., and Rowe, J. J.. 1962. The solubility of quartz in water in the temperature interval from 25 to 300°C. Geochim. Cosmochim. Acta. 26: 1029–1043.CrossRefGoogle Scholar
Morris, A. W. and Riley, J. P.. 1966. The bromide/chlorinity and sulfate/chlorinity ratio in seawater. Deep-Sea Res. 13: 699–705.Google Scholar
Morris, J. D., Leeman, W. P., and Tera, F.. 1990. The subducted component in island are lavas: constraints from Be isotopes and B–Be systematics. Nature 344: 31–36.CrossRefGoogle ScholarPubMed
Morse, J. W. and Berner, R. A.. 1972. Dissolution kinetics of calcium carbonate in seawater: II. A kinetic origin for the lysocline. Am. J. Sci. 272: 840–851.CrossRefGoogle Scholar
Mottl, M. J. and Wheat, C. G.. 1994. Hydrothermal circulation through mid-ocean ridge flanks: fluxes of heat and magnesium. Geochim. Cosmochim. Acta 58: 2225–2237.CrossRefGoogle Scholar
Mucci, A. 1983. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am. J. Sci. 283: 780–799.CrossRefGoogle Scholar
Mulder, A., van de Graaf, A. A., Robertson, L. A., and Kuenen, J. G.. 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16: 177–184.CrossRefGoogle Scholar
Murphy, J. and Riley, J. P.. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27: 31–36.CrossRefGoogle Scholar
Natterer, K. 1892–1894. Chemische Untersuchungen im östlichen Mittelmeer. Monatsh. Chem. 13: 873–890, 897–908; 14: 624–673; 15: 530–604.CrossRefGoogle Scholar
Nebel, O., Sherer, E. E., and Mezger, K.. 2010. Evaluation of the 87Rb decay constant by age comparison against the U–Pb system. Earth Planet. Sci. Lett. 301: 1–8.
Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A., and Quéguiner, B.. 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycles 9: 359–372.CrossRefGoogle Scholar
Nelson, K. H. and Thompson, T. G.. 1954. Deposition of salts from seawater by frigid concentration. J. Mar. Res. 13: 166–182.Google Scholar
Nollet, J. A. 1748. Recherches sur les causes du bouillonnement des liquides. Mémoires. de Mathématique et de Physique de l’Académie Royal des Sciences, Paris, 1748, pp. 57–104 & 2 plates.Google Scholar
Nørby, J. G. 2000. The origin and meaning of the little p in pH. Trends in Biochem. Sci. 25: 36–37.CrossRefGoogle Scholar
Nozaki, Y. 1997. A fresh look at element distribution in the North Pacific Ocean. EOS 78(21): 221.Google Scholar
NRC. 2008. Desalination, a National Perspective. National Academies Press, Washington, DC.Google Scholar
Oliver, B. M., Bradley, J. G., and Farrar, H.. 1984. Helium concentration in the Earth’s lower atmosphere. Geochim. Cosmochim. Acta 48: 1759–1767.CrossRefGoogle Scholar
Opsahl, S. and Benner, R.. 1997. Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 386: 480–482.CrossRefGoogle Scholar
Oren, A. and Rodríguez-Valera, F.. 2001. The contribution of halophilic Bacteria to the red coloration of saltern crystallizer ponds. FEMS Microbiology and Ecology 36: 123–130.Google ScholarPubMed
Orians, K. J. and Bruland, K. W.. 1985. Dissolved aluminium in the central North Pacific. Nature 316: 427–429.CrossRefGoogle Scholar
Orians, K. J. and Bruland, K. W.. 1986. The biogeochemistry of aluminum in the Pacific Ocean. Earth Planet. Sci. Lett. 78: 397–410.CrossRefGoogle Scholar
Orians, K. J. and Bruland, K. W.. 1988a. Dissolved gallium in the open ocean. Nature 332: 717–719.CrossRefGoogle Scholar
Orians, K. J. and Bruland, K. W.. 1988b. The marine geochemistry of dissolved gallium: A comparison with dissolved aluminum. Geochim. Cosmochim. Acta 52: 2955–2962.CrossRefGoogle Scholar
Orians, K. J., Boyle, E. A., and Bruland, K. W.. 1990. Dissolved titanium in the open ocean. Nature 348: 322–325.CrossRefGoogle Scholar
Ostlund, H. G., Craig, H., Broecker, W. S., and Spencer, D.. 1987. GEOSECS Atlantic, Pacific, and Indian Ocean Expeditions. Vol. 7. Shore-based Data and Graphics. National Science Foundation, Washington, DC.Google Scholar
Oudot, C., Andrie, C., and Montel, Y.. 1990. Nitrous oxide production in the tropical Atlantic Ocean. Deep-Sea Res. 37: 183–202.CrossRefGoogle Scholar
Oxner, M. 1962. The Determination of Chlorinity by the Knudsen Method. Translation. G. M.Manufacturing Co., New York.Google Scholar
Özsoy, E., Ünlüata, Ü., and Top, Z.. 1993. The evolution of Mediterranean water in the Black Sea: interior mixing and material transport by double diffusive intrusions. Prog. Oceanogr. 31: 275–320.CrossRefGoogle Scholar
PACODF. 1986. Transient Tracers in the Ocean. North Atlantic Study. 1 April–19 Oct. 1981. SIO Ref. No. 86–15. Scripps Institution of Oceanography, University California, San Diego, CA.Google Scholar
Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., and Wilson, S.. 2006. Global anthropogenic mercury emission inventory for the year 2000. Atmospheric Environment 40: 4048–4063.CrossRefGoogle Scholar
Palmer, M. R. and Edmond, J. M.. 1989. The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett. 92: 11–26.CrossRefGoogle Scholar
Parai, R. and Mukhopadhyay, S.. 2012. How large is the subducted water flux? New constraints on mantle regassing rates. Earth Planet. Sci. Lett. 317–318: 396–406.CrossRefGoogle Scholar
Park, K. 1969. Oceanic CO2 system: an evaluation of ten methods of investigation. Limnol. Oceanogr. 14: 179–186.CrossRefGoogle Scholar
Parsons, B. 1981. The rates of plate creation and consumption. Geophys. J. R. Astr. Soc. 67: 437–448.CrossRefGoogle Scholar
Parsons, B. 1982. Causes and consequences of the relation between area and age of the ocean floor. J. Geophys. Res. 87: 289–302.CrossRefGoogle Scholar
Patterson, C. 1974. Lead in seawater. Science 183: 553–554.CrossRefGoogle Scholar
Paytan, A. and McLaughlin, K.. 2007. The oceanic phosphorus cycle. Chem. Rev. 107: 563–576.CrossRefGoogle ScholarPubMed
Paytan, A., Kastner, M., Martin, E. E., Macdougall, J. D., and Herbert, T.. 1993. Marine barite as a monitor of seawater strontium isotope composition. Nature 366: 445–449.CrossRefGoogle Scholar
Peltzer, E. T., Fry, B., Doering, P. H., et al. 1996. A comparison of methods for the measurement of dissolved organic carbon in natural waters. Mar. Chem. 54: 85–96.CrossRefGoogle Scholar
Perez, F. F. and Fraga, F.. 1987. Association constant of fluoride and hydrogen ions in seawater. Mar. Chem. 21: 161–168.CrossRefGoogle Scholar
Perkin, R. G. and Lewis, E. L.. 1980. The practical salinity scale 1978: fitting the data. IEEE J. Oceanic Eng. OE- 5: 9–16.CrossRefGoogle Scholar
Peterson, M. N. A. 1966. Calcite: rates of dissolution in a vertical profile in the Central Pacific. Science 154: 1542–1544.CrossRefGoogle Scholar
Petit, G. R., Jouzel, J., Ragnoud, D. et al. 1999. Climate and atmospheric history of the past 420,000 years from the Vostoc ice core, Antarctica. Nature 399: 429–436.CrossRef
Petley, B. W. 1996. The mole and the unified atomic mass unit. Metrologia 33: 261–264.CrossRefGoogle Scholar
Phillips, O. L. and Gentry, A. H.. 1994. Increasing turnover through time in tropical forests. Science 263: 954–958.CrossRefGoogle ScholarPubMed
Pickard, G. L. and Emery, W. J.. 1990. Descriptive Physical Oceanography, 5th edn. Pergamon Press, New York.Google Scholar
Pilson, M. E. Q. 1974. Arsenate uptake and reduction by Pocillopora verrucosa. Limnol. Oceanogr. 19: 339–341.CrossRefGoogle Scholar
Pilson, M. E. Q. 1985. Annual cycles of nutrients and chlorophyll in Narragansett Bay, Rhode Island. J. Mar. Res. 43: 849–873.CrossRefGoogle Scholar
Pilson, M. E. Q. 1998. Introduction to the Chemistry of the Sea. Prentice Hall, Upper Saddle River, NJ.Google Scholar
Pilson, M. E. Q. 2006. We are evaporating our coal mines into the air. Ambio 35: 130–133.CrossRefGoogle Scholar
Pilson, M. E. Q. 2010. Blue is the desert color of the sea. Where does this sentence come from?Limnol. Oceanol. Bull. 19 (3): 62–63.CrossRefGoogle Scholar
Pimentel, G. C. and McClellan, A. L.. 1960. The Hydrogen Bond. Reinhold Publishing. Company, New York.Google Scholar
Piña-Ochoa, E., Høgslund, S., Geslin, E., et al. 2010. Widespread occurrence of nitrate storage and denitrification among Foraminifera andGromiida. Proc. Natl. Acad. Sci. 107: 1148–1153.CrossRefGoogle Scholar
Plass-Dülmer, C., Khedim, A., Koppmann, R., Johnen, F. J., and Rudolph, J.. 1993. Emissions of light nonmethane hydrocarbons from the Atlantic into the atmosphere. Global Biogeochem. Cycles 7: 211–228.CrossRefGoogle Scholar
Plath, D. C. 1979. The solubility of CaCO3 in seawater and the determination of activity coefficients in electrolyte solutions. M.Sc. Thesis, Oregon State University. 92 pp. (Cited from UNESCO, 1983.)
Plath, D. C., Johnson, K. S., and Pytkowicz, R. M.. 1980. The solubility of calcite – probably containing magnesium – in seawater. Mar. Chem. 10: 9–29.CrossRefGoogle Scholar
Plummer, L. N. and Busenberg, E.. 1982. The solubilities of calcite, aragonite and vaterite in CO2–H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3–CO2–H2O. Geochim. Cosmochim. Acta 46: 1011–1040.CrossRefGoogle Scholar
Plunkett, M. A. and Rakestraw, N. W.. 1955. Dissolved organic matter in the sea. Deep-Sea Res. 3(Suppl.): 12–14.Google Scholar
Poisson, A., Brunet, C., and Brun-Cotton, J. C.. 1980. Density of standard seawater solutions at atmospheric pressure. Deep-Sea Res. 27A: 1013–1028.CrossRefGoogle Scholar
Pollack, H. N., Hurter, S. J., and Johnson, J. R.. 1993. Heat flow from the Earth’s interior: analysis of the global data set. Rev. Geophys. 31: 267–280.CrossRefGoogle Scholar
Postgate, J. 1998. Nitrogen Fixation, 3rd edn, Cambridge, Cambridge University Press.Google Scholar
Prahl, F. G. and Wakeham, S. G.. 1987. Calibration of unsaturation patterns in long-chain ketone compositions for paleoceanography assessment. Nature 330: 367–369.CrossRefGoogle Scholar
Prentice, I. C., Farquhar, G. D., Fasham, M. J. R. et al. 2001. The carbon cycle and atmospheric carbon dioxide. In Houghton and Ding et al. (2001), ch. 3, pp 182–237.
Pütter, A. 1909. Die Ernährung der Wassertiere und der Stoffhaushalt der Gewässer. Fischer, Jena (cited from Stephens 1982).Google Scholar
Pytkowicz, R. M. 1962. Effect of gravity on the distribution of salts in sea water. Limnol. Oceanogr. 7: 434–435.CrossRefGoogle Scholar
Pytkowicz, R. M. 1973. Calcium carbonate retention in supersaturated seawater. Am. J. Sci. 273: 515–522.CrossRefGoogle Scholar
Pytkowicz, R. M., ed. 1979. Activity Coefficients in Electrolyte Solutions, vols. 1 & 2. CRC Press, Boca Raton, FL.Google Scholar
Quay, P. D., Tilbrook, B., and Wong, C. S.. 1992. Oceanic uptake of fossil fuel CO2: carbon-13 evidence. Science 256: 74–79.CrossRefGoogle ScholarPubMed
Raven, J. A. 1988. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phyto. 109: 279–287.CrossRefGoogle Scholar
Raynaud, D., Jouzel, J., Barnola, J. M., et al. 1993. The ice record of greenhouse gases. Science 259: 926–934.CrossRefGoogle Scholar
Redfield, A. C. 1934. On the proportions of organic derivatives in seawater and their relation to the composition of plankton. In James Johnston Memorial Volume, ed Daniel, R. J.. University Press of Liverpool, Liverpool, pp. 176–192.Google Scholar
Redfield, A. C. 1958. The biological control of chemical factors in the environment. Am. Sci. 46: 205–221.Google Scholar
Redfield, A. C., Smith, H. P., and Ketchum, B.. 1937. The cycle of organic phosphorus in the Gulf of Maine. Biol. Bull. 73: 421–443.CrossRefGoogle Scholar
Redfield, A. C., Ketchum, B. H., and Richards, F. A.. 1963. The influence of organisms on the composition of seawater. In The Sea, vol. 2, ed. Hill, M. N.. Interscience, New York, pp. 26–87.Google Scholar
Reid, R. T., Live, D. H., Faulkner, D. J., and Butler, A.. 1993. A siderophore from a marine bacterium with an exceptional ferric ion affinity constant. Nature 366: 455–458.CrossRefGoogle ScholarPubMed
Repeta, D. J., Quan, T. M., Aluwihare, L. I., and Accardi, A. M.. 2002. Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters. Geochim. Cosmochim. Acta 66: 955–962.CrossRefGoogle Scholar
Revelle, R. 1956. Testimony to the House Appropriations Committee. Cited from: Shor, E. N. 1978. Scripps Institution of Oceanography: Probing the Oceans 1936 to 1976. Tofua Press, San Diego. 502 pp.Google Scholar
Revelle, R. and Suess, H. E.. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9: 18–27.CrossRefGoogle Scholar
Richards, F. A. 1965. Anoxic basins and fjords. In Chemical Oceanography, vol. 1, ed. Riley, J. P. and Skirrow, J.. Academic Press, New York, pp. 611–645.Google Scholar
Richards, F. A. 1971. Comments on the effects of denitrification on the budget of combined nitrogen in the ocean. Mer. Bull. Soc. Franco-Japanise d’Oceanogr. 9: 68–77.Google Scholar
Riebesell, U., Fabry, V. J., Hansson, L., Gattuso, J. -P., eds. 2010. Guide to best practices for ocean acidification research and data reporting. EUR24328 EN, Publication Office of the European Union.
Riley, G. 1951. Oxygen, phosphate and nitrate in the Atlantic Ocean. Bull. Bingham Oceanogr. Coll. 13: 1–126.Google Scholar
Riley, G. A., Von Hemert, D., and Wangersky, P. J.. 1965. Organic aggregates in surface and deep waters of the Sargasso Sea. Limnol. Oceanogr. 10: 354–363.CrossRefGoogle Scholar
Riley, J. P. 1965. Historical introduction. In Chemical Oceanography, vol. 1. ed. Riley, J. P. and Skirrow, G.. Academic Press, New York, pp. 1–41.Google Scholar
Riley, J. P. and Skirrow, G., eds. 1975. Chemical Oceanography, 2nd edn., vol. 1. Academic Press, New York.Google Scholar
Riley, J. P. and Tongudai, M.. 1967. The major cation/chlorinity ratios in seawater. Chem. Geol. 2: 263–269.CrossRefGoogle Scholar
Risgaard-Petersen, N., Langezaal, A. M., Ingvardsen, S., et al. 2006. Evidence for complete denitrification in a benthic foraminifer. Nature 443: 93–96.CrossRefGoogle Scholar
Robbins, L. L. and Blackwelder, P. L.. 1992. Biochemical and ultrastructural evidence for the origin of whitings: a biologically induced calcium carbonate precipitation mechanism. Geology 20: 464–468.2.3.CO;2>CrossRefGoogle Scholar
Robinson, R. A. 1954. The vapor pressure and osmotic equivalence of sea water. J. Mar. Biol. Assoc. UK 33: 449–455.CrossRefGoogle Scholar
Robinson, R. A. and Stokes, R. H.. 1970. Electrolyte Solutions, 2nd edn. Butterworths, London.Google Scholar
Romankevich, E. A. 1984. Geochemistry of Organic Matter in the Ocean. Springer-Verlag, New York.CrossRefGoogle Scholar
Ronov, A. B. and Yaroshevsky, A. A.. 1969. Chemical composition of the Earth’s crust. In The Earth’s Crust and Upper Mantle, ed P. J. Hart. American Geophysical Union, Geophysical Monograph 13, Washington, DC, pp. 37–57.Google Scholar
Ross, D. A., Uchupi, E., Prada, K. E., and MacIlvaine, J. C.. 1972. Bathymetry and microtopography of the Black Sea. In The Black Sea – Geology, Chemistry, and Biology, ed Degens, E. T. and Ross, D. A.. American. Association of Petroleum Geologists, Tulsa, OK, pp. 1–10.Google Scholar
Roy, R. N., Roy, L. N., Vogel, K. M., et al. 1993. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45 °C. Mar. Chem. 44: 249–267.CrossRefGoogle Scholar
Rudnick, R. L. and Gao, S.. 2004. Composition of the continental crust. In The Crust, ed. Rudnick, R. L. (Treatise on Geochemistry, vol. 3, ed. Holland, H. D. and Turekian, K. K.), Elsevier, Oxford, pp. 1–64.Google Scholar
Rumpler, A., Edmonds, J. S., Katsu, M., et al. 2008. Arsenic-containing long-chain fatty acids in cod-liver oil: a result of biosynthetic infidelity?Angew. Chem., Int. Ed. Engl. 47: 2665–2667.CrossRefGoogle ScholarPubMed
Ryan, W. B. F. 1973. Geodynamic implications of the Messinian crisis of salinity. In Messinian Events in the Mediterranean, ed. Drooger, C. W.. North-Holland,Amsterdam, pp. 26–38.Google Scholar
Sabine, C. L., Feely, R. A., Gruber, N., et al. 2004. The oceanic sink for anthropogenic CO2. Science 305: 367–371.CrossRefGoogle ScholarPubMed
Saito, M. A. and Moffett, J. W.. 2002. Temporal and spatial variability of cobalt in the Atlantic Ocean. Geochim. Cosmochim. Acta 66: 1943–1953.CrossRefGoogle Scholar
Sanemasa, I. 1975. The solubility of elemental mercury vapor in water. Bull. Chem. Soc. Jpn. 48: 1795–1798.CrossRefGoogle Scholar
Santschi, P. H., Adler, D., Amdurer, M., Li, Y. H., and Bell, J. J.. 1980a. Thorium isotopes as analogues for ‘particle-reactive’ pollutants in coastal marine environments. Earth Planet. Sci. Lett. 47: 327–335.CrossRefGoogle Scholar
Santschi, P. H., Li, Y. H., and Carson, S. R.. 1980b. The fate of trace metals in Narragansett Bay, Rhode Island: radiotracer experiments in microcosms. Estuar. Coast. Mar. Sci. 10: 635–654.CrossRefGoogle Scholar
Sarmiento, J. L. and Gruber, N.. 2006. Ocean Biogeochemical Dynamics. Princeton University Press, Princeton, NJ.Google Scholar
Sayles, F. L. 1979. The composition and diagenesis of interstitial solutions – I. Fluxes across the sediment–water interface in the Atlantic Ocean. Geochim. Cosmochim. Acta 43: 527–545.CrossRefGoogle Scholar
Sayles, F. L. 1981. The composition and diagenesis of interstitial solutions – II. Fluxes and diagenesis at the sediment–water interface in the high latitude North Atlantic and South Atlantic. Geochim. Cosmochim. Acta 45: 1061–1086.CrossRefGoogle Scholar
Schaule, B. K. and Patterson, C. C.. 1981. Lead concentrations in the northeast Pacific: evidence for global anthropogenic perturbations. Earth Planet. Sci. Lett. 54: 97–116.CrossRefGoogle Scholar
Schaule, B. K. and Patterson, C. C.. 1983. Perturbations of the natural lead depth profile in the Sargasso Sea by industrial lead. In Trace Metals in Sea Water, ed. Wong, C. S., Boyle, E., Bruland, K. W., Burton, J. D., and Goldberg, E. D.. Plenum Press, New York, pp. 487–503.CrossRefGoogle Scholar
Schink, D. R., Fanning, K. A., and Pilson, M. E. Q.. 1974. Dissolved silica in the upper pore waters of the Atlantic Ocean floor. J. Geophys. Res. 79: 2243–2250.CrossRefGoogle Scholar
Schink, D. R., Guinasso, N. L., and Fanning, K. A.. 1975. Processes affecting the concentration of silica at the sediment–water interface of the Atlantic Ocean. J. Geophys. Res. 80: 3013–3031.CrossRefGoogle Scholar
Schlesinger, W. H. 1997. Biogeochemistry; An Analysis of Global Change, 2nd edn. Academic Press, New York.Google Scholar
Schopf, J. W., ed. 1983. Earth’s Earliest Biosphere: Its Origin and Evolution. Princeton University Press, Princeton, NJ.Google Scholar
Schrag, D. P., Hampt, G., and Murray, D. W.. 1996. Pore fluid constraints on the temperature and isotopic composition of the glacial ocean. Science 272: 1930–1932.CrossRefGoogle ScholarPubMed
Schubert, G. and Reymer, A. P. S.. 1985. Continental volume and freeboard through geological time. Nature 316: 336–339.CrossRefGoogle Scholar
Schuffert, J. D., Jahnke, R. A., Kastner, M., et al. 1994. Rates of formation of modern phosphorite off western Mexico. Geochim. Cosmochim. Acta 58: 5001–5010.CrossRefGoogle Scholar
Schütt, F. 1892. Das Pflanzenleben der Hochsee. In Ergebnisse der Plankton-Expedition der Humboldt-Stiftung. Band 1, ed. Hensen, V.. Lipsius & Tischer, Kiel und Leipzig, pp. 243–314Google Scholar
Seitzinger, S. P. and Giblin, A. E.. 1996. Estimating denitrification in North Atlantic continental shelf sediments. Biogeochemistry 35: 235–260.CrossRefGoogle Scholar
Seitzinger, S. P., Nixon, S., Pilson, M. E. Q., and Burke, S.. 1980. Denitrification and N2O production in nearshore marine sediments. Geochim. Cosmochim. Acta 44: 1853–1860.CrossRefGoogle Scholar
Seitzinger, S. P., Pilson, M. E. Q., and Nixon, S.. 1983. N2O production in near-shore marine sediments. Science 222: 1244–1246.CrossRefGoogle Scholar
Seitzinger, S. P., Nixon, S. W., and Pilson, M. E. Q.. 1984. Denitrification and nitrous oxide production in a coastal marine ecosystem. Limnol. Oceanogr. 29: 73–83.CrossRefGoogle Scholar
Seitzinger, S. P., Harrison, J. A., Bohlke, J. K., et al. 2006. Denitrification across landscapes and waterscapes: a synthesis. Ecol. Appl. 16: 2064–2090.CrossRefGoogle ScholarPubMed
Sharp, J. H. 1973. Total organic carbon in seawater – comparison of measurements using persulfate oxidation and high-temperature combustion. Mar. Chem. 1: 211–229.CrossRefGoogle Scholar
Sharp, J. H. 1993. The dissolved organic carbon controversy: an update. Oceanography 6: 45–50.CrossRefGoogle Scholar
Shi, D., Xu, Y., Hopkinson, B. M., and Morel, F. M. M.. 2010. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327: 676–679.CrossRefGoogle ScholarPubMed
Shigley, C. M. 1951. Minerals from the sea. J. Met. 3: 25–29.Google Scholar
Shoemaker, E. M. 1983. Asteroid and comet bombardment of the Earth. Ann. Rev. Earth Planet. Sci. 11: 461–494.CrossRefGoogle Scholar
Siever, R. 1968. Sedimentological consequences of a steady-state ocean–atmosphere. Sedimentology 11: 5–59.CrossRefGoogle Scholar
Sillén, L. G. 1961. The physical chemistry of seawater. In Oceanography, ed Sears, M.. American Association for the Advancement of Science, Washington, DC, pp. 549–581.Google Scholar
Simpson, T. L. and Volcani, B. E., eds. 1981. Silicon and Siliceous Structures in Biological Systems. Springer-Verlag, New York.CrossRefGoogle Scholar
Skei, J. M. 1988. Framvaren – environmental setting. Mar. Chem. 23: 209–218.CrossRefGoogle Scholar
Sloan, E. D. 2003. Fundamental principles and applications of natural gas hydrates. Nature 246: 353–359.CrossRefGoogle Scholar
Sloan, E. D. and Koh, C. A.. 2008. Clathrate Hydrates of Natural Gases, 3rd edn. CRC Press. Boca Raton, FL.Google Scholar
Smil, V. 1997. Global population and the nitrogen cycle. Sci. Am. 277: 76–81.CrossRefGoogle Scholar
Smil, V. 2001. Enriching the Earth. MIT Press, Cambridge, MA.Google Scholar
Soffientino, B. and Pilson, M. E. Q.. 2005. The Bosporus Strait, a special place in the history of oceanography. Oceanography 18: 16–23.CrossRefGoogle Scholar
Soffientino, B. and Pilson, M. E. Q.. 2009. Osservazioni intorno al Bosforo Tracio overo Canale di Constantinopoli. Presented in a letter to Her Sacred Royal Majesty Queen Christina of Sweden in 1681 by Luigi Ferdinando Marsilii: English translation with footnotes. Earth Sci. Hist. 28: 57–83.CrossRefGoogle Scholar
Sohrin, Y., Isshiki, K., and Kuwamoto, T.. 1987. Tungsten in North Pacific waters. Mar. Chem. 22: 95–103.CrossRefGoogle Scholar
Sohrin, Y., Fujishima, Y., Ueda, K., et al. 1998. Dissolved niobium and tantalum in the North Pacific. Geophys. Res. Lett. 25: 999–1002.CrossRefGoogle Scholar
Soli, A. L. and Byrne, R. H., 2002. CO2 System hydration and dehydration kinetics and the equilibrium CO2/H2CO3 ratio in aqueous NaCl solution. Mar. Chem. 78: 65–73.CrossRefGoogle Scholar
Solomon, S., Qin, D., Manning, M. et al. 2007. Climate Change 2007. The Physical Science Basis. Cambridge, Cambridge University Press.Google Scholar
Solomon, S., Plattner, G. -K., Knutti, R., and Friedlingstein, P.. 2009. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. 106: 1704–1709.CrossRefGoogle ScholarPubMed
Sonstadt, E. 1872. On the presence of gold in seawater. Chem. News 26: 159–161. Cited from Falkner and Edmond (1990).Google Scholar
Sorokin, Y. I. 1983. The Black Sea. In Ecosystems of the World 26. Estuaries and Enclosed Seas, ed Ketchum, B. H.. Elsevier, New York, pp. 253–292.Google Scholar
Sourirajan, S. and Kennedy, G. C.. 1962. The system H2O–NaCl at elevated temperatures and pressures. Am. J. Sci. 260: 115–141.CrossRefGoogle Scholar
Spencer, D. W. and Brewer, P. G.. 1971. Vertical advection, diffusion and redox potentials as controls on the distribution of manganese and other trace metals dissolved in the Black Sea. J. Geophys. Res. 76: 5877–5892.CrossRefGoogle Scholar
Spencer, R. J. and Hardie, L. A.. 1990. Control of seawater composition by mixing of river waters and midocean ridge hydrothermal brines. In Fluid-Mineral Interactions: A Tribute to H. P. Eugster, ed. Spencer, R. J. and Chou, I. -M.. Special Publication No. 2, The Geochemical Society, San Antonio, TX, pp. 409–419.Google Scholar
Spinrad, R. 2008. The salt of the sea. Oceanography 21(1): 7.Google Scholar
Stacey, F. D. 1992. Physics of the Earth, 3rd edn. Brookfield Press, Brisbane.Google Scholar
Starikova, N. D. 1970. Vertical distribution patterns of dissolved organic carbon in sea water and interstitial solutions. Oceanol. Acad. Sci. USSR 10: 796–807. (Eng. transl.).Google Scholar
Staudigel, H. 2004. Hydrothermal alteration processes in the oceanic crust. In The Crust, ed. Rudnick, R. L. (Treatise on Geochemistry, vol. 3, ed. Holland, H. D. and Turekian, K. K.), Elsevier, Oxford, pp. 511–535.Google Scholar
Steemann Nielsen, E. 1952. The use of radioactive carbon (C14) for measuring organic production in the sea. J. Cons. Int. Explor. Mer 18: 117–140.CrossRefGoogle Scholar
Stein, C. A. and Stein, S.. 1994. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res. 99: 3081–3095.CrossRefGoogle Scholar
Stephens, G. C. 1982. Recent progress in the study of Die Ernährung der Wassertiere und der Stoffhaushalt der Gewässer. Amer. Zool. 22: 611–619.CrossRefGoogle Scholar
Stevenson, D. J. 1983. The nature of the Earth prior to the oldest known rock record: the Hadean Earth. In Earth’s Earliest Biosphere: Its Origin and Evolution, ed. Schopf, J. W.. Princeton University Press, Princeton, NJ, pp. 32–40.Google Scholar
Stoffers, P., Hannigton, M., Wright, I. et al. 1999. Elemental mercury at submarine hydrothermal vents in the Bay of Plenty, Taupo volcanic zone, New Zealand.Google Scholar
Stoye, J. 1994. Marsigli’s Europe. Yale University Press, New Haven, CT.Google Scholar
Strous, M. and Jetten, M. S. M.. 2004. Anaerobic oxidation of methane and ammonium. Ann. Rev. Microbiol. 58: 99117.CrossRefGoogle ScholarPubMed
Strous, M., Fuerst, J. A., Kramer, E. H. M., et al. 1999. Missing lithotroph identified as a new planctomycete. Nature 400: 446–449.CrossRefGoogle ScholarPubMed
Stuiver, M. and Polach, H. A.. 1977. Discussion: reporting of 14C data. Radiocarbon 19: 355–363.CrossRefGoogle Scholar
Stull, R. B. 1988. An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Boston, MA.CrossRefGoogle Scholar
Suess, E. 1980. Particulate organic carbon flux in the oceans – surface productivity and oxygen utilization. Nature 288: 260–263.CrossRefGoogle Scholar
Suess, E. and Whiticar, M. J.. 1989. Methane-derived CO2 in pore fluids expelled from the Oregon subduction zone. Palaeogegr., Palaeoclimat. Palaeoecol. 71: 119–136.CrossRefGoogle Scholar
Sugimura, N. and Suzuki, Y.. 1988. A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Mar. Chem. 24: 105–131.CrossRefGoogle Scholar
Sunda, W. G. 2001. Bioavailability and bioaccumulation of iron in the sea. In The Biogeochemistry of Iron in Seawater, ed. Turner, D. R. and Hunter, K. A.. Wiley, New York, pp. 41–84.Google Scholar
Sunda, W. G., Tester, P. A., and Huntsman, S. A.. 1987. Effects of cupric and zinc ion activities on the survival and reproduction of marine copepods. Mar. Biol. 94: 202–210.CrossRefGoogle Scholar
Sundquist, E. T. 1993. The global carbon dioxide budget. Science 259: 934–941.CrossRefGoogle Scholar
Sundquist, E. T., Plummer, L. N., and Wigley, T. M. L.. 1979. Carbon dioxide in the ocean surface: the homogeneous buffer factor. Science 204: 1203–1205.CrossRefGoogle ScholarPubMed
Sutcliff, W. H., Baylor, E. R., and Menzel, D. W.. 1963. Sea surface chemistry and Langmuir circulation. Deep-Sea Res. 10: 233–243.Google Scholar
Suzuki, N. and Kato, K.. 1953. Studies on suspended materials – marine snow in the sea. Part 1, Sources of marine snow. Bull. Fac. Fish. Hokkaido Univ. 4: 132–137.Google Scholar
Sverdrup, H. U., Johnson, M. W., and Fleming, R.. 1942. The Oceans, Their Physics, Chemistry, and General Biology. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Swift, D. 1980. Vitamins and phytoplankton growth. In The Physiological Ecology of Phytoplankton, ed. Morris, I.. Blackwell, Boston, MA, pp. 329–368.Google Scholar
Swinnerton, J. W. and Linnenbom, V. J.. 1967. Gaseous hydrocarbons in seawater. Determination. Science 156: 1119–1120.CrossRefGoogle Scholar
Takahashi, T., Broecker, W. S., and Langer, S.. 1985. Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res. 90: 6907–6924.CrossRefGoogle Scholar
Taleshi, M. S., Jensen, K. B., Raber, G., et al. 2008. Arsenic-containing hydrocarbons: natural compounds in oil from the fish capelin, Mallotus villosus. Chem. Commun. 39: 4706–4707 .CrossRefGoogle Scholar
Tanaka, M., Girard, G., Davis, R., Peuto, A., and Bignell, N.. 2001. Recommended table for the density of water between 0 °C and 40 °C based on recent experimental reports. Metrologia 38: 301–309. TEOS-10. See .
The Royal Society. 2005. Ocean acidification due to increasing atmospheric carbon dioxide. Policy Document 12/05. See: .
Thiesen, M. 1900. Untersuchungen über die thermische Ausdehnung von festen and tropfbarflüssigen Körpern, ausgeführt durch M. Thiesen, K. S cheel und H. D iesselhorst. Wissenschaftl.Abhandl. Physik.-Tech. Reichanstalt 3: 1–70. Cited in Menaché in UNESCO 1976.Google Scholar
Thompson, C. W. 1873. The Depths of the Sea. MacMillan, London.Google Scholar
Thurman, E. M. 1985. Organic Geochemistry of Natural Waters. Martinus Nijhoff, Dordrecht.CrossRefGoogle Scholar
Tilton, L. W. and Taylor, J. K.. 1937. Accurate representation of the refractivity and density of distilled water as a function of temperature. J. Res. Nat. Bur. Stand. Wash. 18: 205–214.CrossRefGoogle Scholar
Tortell, P. D., Maldonado, M. T., and Price, N. M.. 1996. The role of heterotrophic bacteria in iron-limited ocean ecosystems. Nature 383: 330–332.CrossRefGoogle Scholar
Toy, A. D. F. 1973. Phosphorus. In Comprehensive Inorganic Chemistry, vol. 2, ed. Bailar, J. C., Emeleus, H. J., Nyholm, R. S., and Trotman-Dickenson, A. F.Pergamon Press, Oxford, pp. 389–545.CrossRefGoogle Scholar
Tréguer, P., Nelson, D. M., Van Bennekom, A. J., et al. 1995. The silica balance in the world ocean: a reestimate. Science 268: 375–379.CrossRefGoogle ScholarPubMed
Trenberth, K. E. and Guillemot, C. J.. 1994. The total mass of the atmosphere. J. Geophys. Res. 99: 23,079–23,088.CrossRefGoogle Scholar
Turner, D R. and Hunter, K. A., eds., 2001. The Biogeochemistry of Iron in Seawater. Wiley, New York..Google Scholar
Turner, R. E. and Rabalais, N. N.. 1991. Changes in Mississippi River water quality in this century. Bioscience 41: 140–147.CrossRefGoogle Scholar
Tyndall, J. 1861. On the absorption and radiation of heat by gases and vapors, and on the physical connection of radiation, absorption, and conduction. Phil. Mag. (Ser. 4) 22: 169–194, 273–285.CrossRefGoogle Scholar
Tyndall, J. 1896. The Forms of Water in Clouds and Rivers, Ice and Glaciers. Appleton & Co., New York.CrossRefGoogle Scholar
UNEP Chemicals Branch, 2008. The Global Atmospheric Mercury Assessment: Sources, Emissions and Transport. UNEP-Chemicals, Geneva.
UNESCO. 1962. Joint Panel on the Equation of State of Sea Water. UNESCO, Paris Cited in Wallace 1974.
UNESCO. 1966. International Oceanographic Tables. UNESCO Technical Papers in Marine Science, vol. 39. UNESCO, Paris.Google Scholar
UNESCO. 1976. Seventh report of the Joint Panel on Oceanographic Tables and Standards. UNESCO Technical Papers in Marine Science, vol. 24. UNESCO, Paris.Google Scholar
UNESCO. 1981a. Background papers and supporting data on the Practical Salinity Scale 1978. UNESCO Technical Papers in Marine Science 37. UNESCO, Paris.Google Scholar
UNESCO. 1981b. Background papers and supporting data on the International Equation of State of Sea-water 1980. UNESCO Technical papers in Marine Science 38. UNESCO, Paris.Google Scholar
UNESCO. 1983a. Carbon dioxide sub-group of the joint panel on oceanographic tables and standards. UNESCO Technical Papers in Marine Science, vol. 42. UNESCO, Paris.Google Scholar
UNESCO. 1983b. Algorithms for computation of fundamental properties of seawater. UNESCO Technical Papers in Marine Science, vol. 44. UNESCO, Paris.Google Scholar
UNESCO. 1985. The international system of units (SI) in oceanography. UNESCO Technical Papers in Marine Science, vol. 45. UNESCO, Paris.Google Scholar
UNESCO. 1987. Thermodynamics of the carbon dioxide system in seawater. UNESCO Technical Papers in Marine Science, vol. 51. UNESCO, Paris.
Uppström, L. R. 1974. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep-Sea Res. 21: 161–162.Google Scholar
USGS. 2012. Commodity Statistics and Information. See .
Usiglio, M. J. 1849. Études sur la composition de l’eau de la Mediterranée et sur l’exploitation des sels qu’elle contient. Ann. Chim. Phys. (Ser. 3) 27: 172–191.Google Scholar
Usoskin, I. G. and Kromer, B.. 2005. Reconstruction of the 14C production rate from measured relative abundance. Radiocarbon 47: 31–37.CrossRefGoogle Scholar
Valladares, Captain J., Fennel, W., and Morozov, E. G.. 2011. Replacement of EOS-80 with the International Thermodynamic Equation of Seawater – 2010 (TEOS-10). Deep-Sea Research I 58: 978.Google Scholar
von Bibra, E. 1851. Untersuchung von Seewasser des stillen Meeres und des atlantischen Oceans. Ann. Chem. Pharm. 77: 90–102.CrossRefGoogle Scholar
von Brand, T., Rakestraw, N. W. et al. 1937–1942. Decomposition and regeneration of nitrogeneous organic matter in seawater. Biol. Bull. 72: 165; 77: 285; 79:231; 81:63; 83:273CrossRefGoogle Scholar
Von Damm, K. L. 1990. Seafloor hydrothermal activity: black smoker chemistry and chimneys. Ann. Rev. Earth Planet. Sci. 18: 173–204.CrossRefGoogle Scholar
Von Damm, K. L. and Bischoff, J. L.. 1987. Chemistry of hydrothermal solutions from the southern Juan de Fuca Ridge. J. Geophys. Res. 92: 11,334–11,346.CrossRefGoogle Scholar
von Huene, R. and Scholl, D. W.. 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 29: 279–316.CrossRefGoogle Scholar
Vraspir, J. M. and Butler, A.. 2009. Chemistry of marine ligands and siderophores. Ann. Rev. Marine Sci. 1: 43–63.CrossRefGoogle ScholarPubMed
Walker, J. C. G. 1977. Evolution of the Atmosphere. MacMillan, New York.Google Scholar
Wallace, W. J. 1974. The Development of the Chlorinity/Salinity Concept in Oceanography. Elsevier, New York.Google Scholar
Walsh, J. J. 1989. How much shelf production reaches the deep sea? In Productivity of the Ocean: Present and Past, ed. Berger, W. H., Smetacek, V. S., and Wefer, G.. John Wiley & Sons, New York, pp. 175–191.Google Scholar
Wangersky, P. J. 2000. Intercomparisons and intercalibrations. In The Handbook of Environmental Chemistry, vol. 5D. Springer-Verlag, Berlin, ch. 7, pp. 167–191.Google Scholar
Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97: 7373–7382.CrossRefGoogle Scholar
Wanninkhof, R. and Knox, M.. 1996. Chemical enhancement of CO2 exchange in natural waters. Limnol. Oceanogr. 41: 689–697.CrossRefGoogle Scholar
Wanninkhof, R. K. F., Sullivan, , and Top, Z.. 2004. Air–sea gas transfer in the Southern Ocean. J. Geophys. Res. 109: CO8S19, .CrossRefGoogle Scholar
Warneck, P. 1988. Chemistry of the Natural Atmosphere. Academic Press, New York.Google Scholar
Warner, M. J. and Roden, G. I.. 1995. Chlorofluorocarbon evidence for recent ventilation of the deep Bering Sea. Nature 373: 409–412.CrossRefGoogle Scholar
Wedepohl, K. H., ed. 1969. Handbook of Geochemistry. Springer-Verlag, New York.CrossRefGoogle Scholar
Wedepohl, K. H. 1995. The composition of the continental crust. Geochim. Cosmochim. Acta 59: 1217–1232.CrossRefGoogle Scholar
Wefer, G., Fischer, G., Fuetterer, D., and Gersonde, R.. 1988. Seasonal particle flux in the Bransfield Strait, Antarctica. Deep-Sea Res. 35: 891–898.CrossRefGoogle Scholar
Weiss, R. F. 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res. 17: 721–735.Google Scholar
Weiss, R. F. 1971. Solubility of helium and neon in water and seawater. J. Chem. Eng. Data 16: 235–241.CrossRefGoogle Scholar
Weiss, R. F. 1974. Carbon dioxide in water and seawater: the solubility of non-ideal gas. Mar. Chem. 2: 203–215.CrossRefGoogle Scholar
Weiss, R. F. and Kyser, T. K.. 1978. Solubility of krypton in water and seawater. J. Chem. Eng. Data 23: 69–72.CrossRefGoogle Scholar
Weiss, R. F and Price, B. A.. 1980. Nitrous oxide solubility in water and seawater. Mar. Chem. 8: 347–359.CrossRefGoogle Scholar
Weiss, R. F., Östlund, H. G., and Craig, H.. 1979. Geochemical studies of the weddell sea. Deep-Sea Res. 26A: 1093–1120.CrossRefGoogle Scholar
Weiss, R. F., Broecker, W. S., Craig, H., and Spencer, D.. 1983. GEOSECS Indian Ocean Expedition, Hydrographic Data 1977–1978. US GovernmentPrinting Office, Washington, DC.Google Scholar
Wells, M. L. and Goldberg, E. D.. 1992. Marine submicron particles. Mar. Chem. 40: 5–18.CrossRefGoogle Scholar
Westheimer, F. H. 1987. Why nature chose phosphates. Science 235:1173–1178.CrossRefGoogle ScholarPubMed
Whitfield, M. 1975a. An improved specific interaction model for seawater at 25 °C and 1 atmosphere total pressure. Mar. Chem. 3: 197–213.CrossRefGoogle Scholar
Whitfield, M. 1975b. The extension of chemical models for sea water to include trace components at 25 °C and 1 atm pressure. Geochim. Cosmochim. Acta 39: 1545–1557.CrossRefGoogle Scholar
Whitfield, M., Butler, R. A., and Covington, A. K.. 1985. The determination of pH in estuarine waters I. Definition of pH scales and the selection of buffers. Oceanologica Acta 8: 423–432.Google Scholar
Wiebe, W. J., Johannes, R. E., and Webb, K. L.. 1975. Nitrogen fixation by a coral reef community. Science 188: 257–259.CrossRefGoogle ScholarPubMed
Wiesenberg, D. A. and Guinasso, N. M., Jr. 1979. Equilibrium solubilities of methane, carbon monoxide and hydrogen in water and seawater. J. Chem. Eng. Data 24: 356–360.CrossRefGoogle Scholar
Wieser, M. E. 2006. Atomic weights of the elements 2005 (IUPAC Technical Report). Pure Appl. Chem. 78: 2051–2066.CrossRefGoogle Scholar
Williams, P. M. 1961. Organic acids in Pacific Ocean waters. Nature 189: 219–220.CrossRefGoogle Scholar
Williams, P. M. 1965. Fatty acids derived from lipids of marine origin. J Fish. Res. Bd. Can. 22: 1107–1122.CrossRefGoogle Scholar
Williams, P. M. and Druffel, E. R. M.. 1987. Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330: 246–248.CrossRefGoogle Scholar
Williams, P. M. and Druffel, E. R. M.. 1988. Dissolved organic matter in the ocean: comments on a controversy. Oceanography 1: 14–17.CrossRefGoogle Scholar
Williams, P. M., Oeschger, H., and Kinney, P.. 1969. Natural radiocarbon activity of the dissolved organic carbon in the North-East Pacific Ocean. Nature 224: 256–258.CrossRefGoogle Scholar
Wilson, T. R. S. 1975. Salinity and the major elements of sea water. In Chemical Oceanography, 2nd edn, vol. 1, ed. Riley, J. P, and Skirrow, G.. Academic Press, New York, ch. 7, pp. 365–413.Google Scholar
Wilson, T. R. S. 1978. Evidence for denitrification in aerobic pelagic sediments. Nature 274: 354–356.CrossRefGoogle Scholar
Wise, D. L. and Houghton, H. G.. 1966. The diffusion coefficients of ten slightly soluble gases in water at 10–60°C. Chem. Eng. Sci. 21: 999–1010.CrossRefGoogle Scholar
Wollast, R. 1974. The silica problem. In The Sea, vol. 5, ed Goldberg, E.. John Wiley & Sons, New York, pp. 359–392.Google Scholar
Wong, G. T. F. and Grosch, C. E.. 1978. A mathematical model for the distribution of dissolved silicon in interstitial waters – an analytical approach. J. Mar. Res. 36: 735–750.Google Scholar
Wright, D. G., Pawlowicz, R., McDougall, T. J., Feistel, R., and Marion, G. M.. 2011. Absolute salinity, “Density Salinity” and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10. Ocean Sci. 7: 1–26.CrossRefGoogle Scholar
Wu, J, and Boyle, E. A.. 1997. Lead in the western North Atlantic Ocean: Completed response to leaded gasoline phaseout. Geochim. Cosmochim. Acta 61: 3279–3283.CrossRefGoogle Scholar
Yamamoto, S., Alcauskas, J. B., and Crozier, T. E.. 1976. Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21: 78–80.CrossRefGoogle Scholar
Yonge, S. M. 1972. The inception and significance of the Challenger Expedition. Proc. Roy. Soc. Edinburgh B 72: 1–13. (And subsequent articles in the same volume.)CrossRefGoogle Scholar
Zeebe, R. E. and Wolf-Gladrow, D.. 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier, New York.Google Scholar
Zehr, J. P., Waterbury, J. B., Turner, P. J., et al. 2001. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412: 635–638.CrossRefGoogle ScholarPubMed
Zehr, J. P. 2009. New twist on nitrogen cycling in oceanic oxygen minimum zones. Proc. Natl. Acad. Sci. 106: 4575–4576.CrossRefGoogle ScholarPubMed
Zhang, J., Amakawa, H., and Nozaki, Y.. 1994. The comparative behaviors of yttrium and lanthanides in seawater of the North Pacific. Geophys. Res. Lett. 21: 2677–2680.CrossRefGoogle Scholar
Zhang, J., Quay, P. D., and Wilbur, D. O.. 1995. Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochim. Cosmochim. Acta 59: 107–114.CrossRefGoogle Scholar
Zumft, W. G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Molec. Biol. Rev. 61: 533–616.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Michael E. Q. Pilson, University of Rhode Island
  • Book: An Introduction to the Chemistry of the Sea
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139047203.031
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Michael E. Q. Pilson, University of Rhode Island
  • Book: An Introduction to the Chemistry of the Sea
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139047203.031
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Michael E. Q. Pilson, University of Rhode Island
  • Book: An Introduction to the Chemistry of the Sea
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139047203.031
Available formats
×