Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T17:42:28.291Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 October 2012

Francesco Maggi
Affiliation:
Università degli Studi di Firenze, Italy
Get access
Type
Chapter
Information
Sets of Finite Perimeter and Geometric Variational Problems
An Introduction to Geometric Measure Theory
, pp. 445 - 452
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AB90] L., Ambrosio and A., Braides. Functionals defined on partitions in sets of finite perimeter II: Semicontinuity, relaxation and homogenization. J. Math. P ures Appl., 69:307–333, 1990.Google Scholar
[AC09] F., Alter and V., Caselles. Uniqueness of the Cheeger set of a convex body. Nonlinear Anal., 70(1):32–44, 2009.Google Scholar
[ACC05] F., Alter, V., Caselles, and A., Chambolle. A characterization of convex calibrable sets in ℝn. Math. Ann., 332(2):329–366, 2005.Google Scholar
[ACMM01] L., Ambrosio, V., Caselles, S., Masnou, and J. M., Morel. Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. (JEMS), 3(1):39–92, 2001.Google Scholar
[AFP00] L., Ambrosio, N., Fusco, and D., Pallara. Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. New York, The Clarendon Press, Oxford University Press, 2000. xviii + 434 pp.Google Scholar
[All72] W. K., Allard. On the first variation of a varifold. Ann. Math., 95:417–491, 1972.Google Scholar
[All75] W. K., Allard. On the frst variation of a varifold: boundary behaviour. Ann.Math., 101:418–446, 1975.Google Scholar
[Alm66] F. J., Almgren Jr. Plateau's Problem. An Invitation to Varifold Geometry. Mathematics Monograph Series. New York, Amsterdam, W. A. Benjamin, Inc., 1966. xii + 74 pp.Google Scholar
[Alm68] F. J., Almgren Jr, Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure. Ann. Math., 87:321–391, 1968.Google Scholar
[Alm76] F. J., Almgren Jr. Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Amer. Math. Soc., 4(165): viii + 199 pp, 1976.Google Scholar
[Alm00] F. J., Almgren Jr, Almgren's Big Regularity Paper. Q-valued Functions Minimizing Dirichlet's Integral and the Regularity of Area-minimizing Rectifable Currents up to Codimension 2, Volume 1 of World Scientific Monograph Series in Mathematics. River Edge, NJ, World Scientifc Publishing Co., Inc., 2000. xvi + 955 pp.Google Scholar
[AM98] L., Ambrosio and C., Mantegazza. Curvature and distance function from a manifold. J. Geom. Anal., 8:723–748, 1998.Google Scholar
[Amb97] L., Ambrosio. Corso Introduttivo alla Teoria Geometrica della Misura ed alle Superfci Minime. Pisa, Edizioni Scuola Normale Superiore di Pisa, 1997.Google Scholar
[AP99] L., Ambrosio and E., Paolini. Partial regularity for quasi minimizers of perimeter. Ricerche Mat., 48:167–186, 1999.Google Scholar
[AP01] L., Ambrosio and E., Paolini. Errata-corrige: “Partial regularity for quasi minimizers of perimeter”. Ricerche Mat., 50:191–193, 2001.Google Scholar
[BCCN06] G., Bellettini, V., Caselles, A., Chambolle, and M., Novaga. Crystalline mean curvature fow of convex sets. Arch. Rational Mech. Anal., 179(1): 109–152, 2006.Google Scholar
[BdC84] J. L., Barbosa and M. do, Carmo. Stability of hypersurfaces with constant mean curvature. Math. Z., 185(3):339–353, 1984.Google Scholar
[BDGG69] E., Bombieri, E., De Giorgi, and E., Giusti. Minimal cones and the Bernstein problem. Invent. Math., 7:243–268, 1969.Google Scholar
[BGM03] E., Barozzi, E., Gonzalez, and U., Massari. The mean curvature of a Lipschitz continuous manifold. Rend. Mat. Acc. Lincei s. 9, 14:257–277, 2003.Google Scholar
[BGT87] E., Barozzi, E., Gonzalez, and I., Tamanini. The mean curvature of a set of finite perimeter. Proc. Amer. Math. Soc., 99(21):313–316, 1987.Google Scholar
[Bin78] D., Bindschadler. Absolutely area minimizing singular cones of arbitrary codimension. Trans. Amer. Math. Soc., 243:223–233, 1978.Google Scholar
[BM94] J. E., Brothers and F., Morgan. The isoperimetric theorem for general integrands. Mich. Math. J., 41(31):419–431, 1994.Google Scholar
[BNP01a] G., Bellettini, M., Novaga, and M., Paolini. On a crystalline variational problem I: First variation and global L∞ regularity. Arch. Ration. Mech. Anal., 157(3):165–191, 2001.Google Scholar
[BNP01b] G., Bellettini, M., Novaga, and M., Paolini. On a crystalline variational problem II: BV regularity and structure of minimizers on facets. Arch. Ration. Mech. Anal., 157(3):193–217, 2001.Google Scholar
[Bom82] E., Bombieri. Regularity theory for almost minimal currents. Arch. Ration. Mech. Anal., 7(7):99–130, 1982.Google Scholar
[Bon09] M., Bonacini. Struttura delle m-bolle di Perimetro Minimo e il Teorema della Doppia Bolla Standard. Master's Degree thesis, Universit àdegli Studi di Modena e Reggio Emilia, 2009.Google Scholar
[BNR03] M., Bellettini, M., Novaga, and G., Riey. First variation of anisotropic energies and crystalline mean curvature for partitions. Interfaces Free Bound., 5(3):331–356, 2003.Google Scholar
[CC06] V., Caselles and A., Chambolle. Anisotropic curvature-driven flow of convex sets. Nonlinear Anal., 65(8):1547–1577, 2006.Google Scholar
[CCF05] M., Chlebik, A., Cianchi, and N., Fusco. The perimeter inequality under Steiner symmetrization: cases of equality. Ann. Math., 162:525–555, 2005.Google Scholar
[CCN07] V., Caselles, A., Chambolle, and M., Novaga. Uniqueness of the Cheeger set of a convex body. Pacifc J. Math., 232(1):77–90, 2007.Google Scholar
[CCN10] V., Caselles, A., Chambolle, and M., Novaga. Some remarks on uniqueness and regularity of Cheeger sets. Rend. Semin. Mat. Univ. Padova, 123: 191201, 2010.Google Scholar
[CF10] S. J., Cox and E., Flikkema. The minimal perimeter for n confned de formable bubbles of equal area. Electron. J. Combin., 17(1), 2010.Google Scholar
[Dav04] A., Davini. On calibrations for Lawson's cones. Rend. Sem. Mat. Univ. Padova, 111:55–70, 2004.Google Scholar
[Dav09] G., David. Hölder regularity of two-dimensional almost-minimal sets in ℝn. Ann. Fac. Sci. Toulouse Math.(6), 18(1):65–246, 2009.Google Scholar
[Dav10] G., David. C1+α-regularity for two-dimensional almost-minimal sets in ℝn. J. Geom. Anal., 20(4):837–954, 2010.
[DG54] E., De Giorgi. Su una teoria generale della misura (r - 1)-dimensionale in uno spazio ad r-dimensioni. Ann. Mat. Pura Appl. (4), 36:191–213, 1954.Google Scholar
[DG55] E., De Giorgi. Nuovi teoremi relativi alle misure (r - 1)-dimensionali in uno spazio ad r-dimensioni. Ricerche Mat., 4:95–113, 1955.Google Scholar
[DG58] E., De Giorgi. Sulla proprietà isoperimetrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita. Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez.I(8), 5:33–44, 1958.Google Scholar
[DG60] E., De Giorgi. Frontiere Orientate di Misura Minima. Seminario di Matematica della Scuola Normale Superiore di Pisa. Editrice Tecnico Scientifca, Pisa, 1960. 57 pp.Google Scholar
[Din44] A., Dinghas. Über einen geometrischen Satz von Wulf für die Gle-ichgewichtsform von Kristallen. Z. Kristallogr. Mineral. Petrogr. Abt. A., 105:304–314, 1944.Google Scholar
[DL08] C., De Lellis. Rectifable Sets, Densities and Tangent Measures. Z ürich Lectures in Advanced Mathematics. Zürich, European Mathematical Society (EMS), 2008. vi + 127 pp.Google Scholar
[DLS11a] C., De Lellis and E. N., Spadaro. Center manifold: a study case. Disc. Cont. Din. Syst. A, 31(4):1249–1272, 2011.Google Scholar
[DLS11b] C., De Lellis and E. N., Spadaro. q-valued functions revisited. Mem. Amer. Math. Soc., 211: vi + 79 pp., 2011.Google Scholar
[DM95] G., Dolzmann and S., Müller. Microstructures with finite surface energy: the two-well problem. Arch. Rational Mech. Anal., 132(2):101–141, 1995.Google Scholar
[DPM12] G., De Philippis and F., Maggi. Sharp stability inequalities for the Plateau problem. Preprint cvgmt.sns.it/paper/1715/, 2012.Google Scholar
[DPP09] G., De Philippis and E., Paolini. A short proof of the minimality of Simons cone. Rend. Sem. Mat. Univ. Padova, 121:233–241, 2009.Google Scholar
[DS93] F., Duzaar and K., Stefen. Boundary regularity for minimizing currents with prescribed mean curvature. Calc. Var., 1:355–406, 1993.Google Scholar
[DS02] F., Duzaar and K., Stefen. Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals. J. Reine Angew. Math., 564:73–138, 2002.Google Scholar
[EG92] L. C., Evans and R. F., Gariepy. Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. Boca Raton, FL, CRC Press, 1992. viii + 268 pp.Google Scholar
[Eva98] L. C., Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. Providence, RI, American Mathematical Society, 1998. xviii + 662 pp.Google Scholar
[FAB+93] J., Foisy, M., Alfaro, J., Brock, N., Hodges, and J., Zimba. The standard double soap bubble in ℝ2 uniquely minimizes perimeter. Pacific J. Math., 159(1), 1993.Google Scholar
[Fal86] K. J., Falconer. The Geometry of Fractal Sets, volume 85 of CambridgeTracts in Mathematics. Cambridge, Cambridge University Press, 1986.xiv+162 pp.Google Scholar
[Fal90] K. J., Falconer. Fractal Geometry. Mathematical Foundations and Applications. Chichester, John Wiley and Sons, Ltd., 1990. xxii+288 pp.Google Scholar
[Fal97] K. J., Falconer. Techniques in Fractal Geometry. Chichester, John Wiley and Sons, Ltd., 1997. xviii+256 pp.Google Scholar
[Fed69] H., Federer. Geometric Measure Theory, volume 153 of Die Grundlehren der mathematischen Wissenschaften. New York, Springer-Verlag New York Inc., 1969. xiv+676 pp.Google Scholar
[Fed70] H., Federer. The singular sets of area minimizing rectifable currents with codimension one and of area minimizing fat chains modulo two with arbitrary codimension. Bull. Amer. Math. Soc., 76:767–771, 1970.Google Scholar
[Fed75] H., Federer. Real flat chains, cochains and variational problems. Indiana Univ. Math. J., 24:351–407, 1974/75.Google Scholar
[FF60] H., Federer and W. H., Fleming. Normal and intregral currents. Ann. Math., 72:458–520, 1960.Google Scholar
[Fin86] R., Finn. Equilibrium Capillary Surfaces, volume 284 of Die Grundlehren der mathematischen Wissenschaften. New York, Springer-Verlag New York Inc., 1986. xi+245 pp.Google Scholar
[Fle62] W. H., Fleming. On the oriented plateau problem. Rend. Circ. Mat. Palermo (2), 11:69–90, 1962.Google Scholar
[FM91] I., Fonseca and S., Müller. A uniqueness proof for the Wulff theorem. Proc. R. Soc. Edinb. Sect. A, 119(12):125–136, 1991.Google Scholar
[FM92] I., Fonseca and S., Müller. Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal., 23(5):1081–1098, 1992.Google Scholar
[FM11] A., Figalli and F., Maggi. On the shape of liquid drops and crystals in the small mass regime. Arch. Rat. Mech. Anal., 201:143–207, 2011.Google Scholar
[FMP08] N., Fusco, F., Maggi and A., Pratelli. The sharp quantitative isoperimetric inequality. Ann. Math., 168:941–980, 2008.Google Scholar
[FMP10] A, Figalli, F., Maggi and A., Pratelli. A mass transportation approach to quantitative isoperimetric inequalities. Inv. Math., 182(1):167–211, 2010.Google Scholar
[Fus04] N., Fusco. The classical isoperimetric theorem. Rend. Accad. Sci. Fis. Mat. Napoli (4), 71:63–107, 2004.Google Scholar
[Gar02] R. J., Gardner. The Brunn–Minkowski inequality. Bull. Am. Math. Soc. (NS), 39(3):355–405, 2002.Google Scholar
[Giu80] E., Giusti. The pendent water drop. A direct approach. Bollettino UMI, 17-A:458–465, 1980.Google Scholar
[Giu81] E., Giusti. The equilibrium confguration of liquid drops. J. Reine Angew. Math., 321:53–63, 1981.Google Scholar
[Giu84] E., Giusti. Minimal Surfaces and Functions of Bounded Variation,volume 80 of Monographs in Mathematics. Basel, Birkhäuser Verlag, 1984. xii+240 pp.Google Scholar
[GM94] E. H. A., Gonzalez and U., Massari. Variational mean curvatures. Rend. Sem. Mat. Univ. Politec. Torino, 52(1):128, 1994.Google Scholar
[GM05] M., Giaquinta and L., Martinazzi. An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, volume 2 of Lecture Notes. Scuola Normale Superiore di Pisa (New Series). Pisa, Edizioni della Normale, 2005. xiv+676 pp.Google Scholar
[GMS98a] M., Giaquinta, G., Modica, and J., Soucek. Cartesian Currents in the Calculus of Variations. I. Cartesian Currents, volume 37 of Ergebnisse derMathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Berlin, Springer-Verlag, 1998. xxiv+711 pp.Google Scholar
[GMS98b] M., Giaquinta, G., Modica, and J., Soucek. Cartesian Currents in the Calculus of Variations. II. Variational Integrals, volume 38 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Berlin, Springer-Verlag, 1998. xxiv+697 pp.Google Scholar
[GMT80] E., Gonzalez, U., Massari, and I., Tamanini. Existence and regularity for the problem of a pendent liquid drop. Pacific Journal of Mathematics, 88(2):399–420, 1980.Google Scholar
[GMT93] E. H. A., Gonzales, U., Massari, and I., Tamanini. Boundaries of prescribed mean curvature. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 4(3):197–206, 1993.Google Scholar
[Gon76] E., Gonzalez. Sul problema della goccia appoggiata. Rend. Sem. Mat. Univ. Padova, 55:289–302, 1976.Google Scholar
[Gon77] E., Gonzalez. Regolarità per il problema della goccia appoggiata. Rend. Sem. Mat. Univ. Padova, 58:25–33, 1977.Google Scholar
[Grü87] M., Grüter. Boundary regularity for solutions of a partitioning problem. Arch. Rat. Mech. Anal., 97:261–270, 1987.Google Scholar
[GT77] E., Gonzalez and I., Tamanini. Convessità della goccia appoggiata. Rend. Sem. Mat. Univ. Padova, 58:35–43, 1977.Google Scholar
[GT98] D., Gilbarg and N. S., Trudinger. Elliptic Partial Differential E quations of Second Order. Berlin; New York, Springer, 1998. xiii+517 pp.Google Scholar
[Hal01] T. C., Hales. The honeycomb conjecture. Discrete Comput. Geom., 25(1):1–22, 2001.Google Scholar
[Har77] R., Hardt. On boundary regularity for integral currents or flat chains modulo two minimizing the integral of an elliptic integrand. Comm. Part. Diff. Equ., 2:1163–1232, 1977.Google Scholar
[HL86] R., Hardt and F. H., Lin. Tangential regularity near the C1 boundary. Proc. Symp. Pure Math., 44:245–253, 1986.Google Scholar
[HMRR02] M., Hutchings, F., Morgan, M., Ritoré, and A., Ros. Proof of the double bubble conjecture. Ann. of Math. (2), 155(2):459–489, 2002.Google Scholar
[HS79] R., Hardt and L., Simon. Boundary regularity and embedded solutions for the oriented Plateau problem. Ann. Math., 110:439–486, 1979.Google Scholar
[Hut81] J. E., Hutchinson. Fractals and self-similarity. Indiana Univ. M ath. J., 30(5):713–747, 1981.Google Scholar
[Hut97] M., Hutchings. The structure of area-minimizing double bubbles. J. Geom. Anal., 7:285–304, 1997.Google Scholar
[Kno57] H., Knothe. Contributions to the theory of convex bodies. Mich. M ath. J., 4:39–52, 1957.Google Scholar
[KP08] S. G., Krantz and H. R., Parks. Geometric Integration Theory, volume 80 of Cornerstones. Boston, MA, Birkhäuser Boston, Inc., 2008. xvi+339 pp.Google Scholar
[KS00] D., Kinderlehrer and G., Stampacchia. An Introduction to Variational Inequalities and their Applications, volume 31 of Classics in Applied Mathematics. Philadelphia, PA, Society for Industrial and Applied Mathematics (SIAM), 2000.Google Scholar
[Law72] H. B., Lawson Jr, The equivariant Plateau problem and interior regularity. Trans. Amer. Math. Soc., 173:231–249, 1972.Google Scholar
[Law88] G. R., Lawlor. A Sufficient Criterion for a Cone to be Area Minimizing. PhD thesis, Stanford University, 1988.Google Scholar
[Leo00] G. P., Leonardi. Blow-up of oriented boundaries. Rend. Sem. Mat. Univ. Padova, 103:211–232, 2000.Google Scholar
[Leo01] G. P., Leonardi. Infiltrations in immiscible fulids systems. Proc. Roy. Soc. Edinburgh Sect. A, 131(2):425–436, 2001.Google Scholar
[Mas74] U., Massari. Esistenza e regolarità delle ipersuperfice di curvatura media assegnata in ℝn. Arch. Rational Mech. Anal., 55:357–382, 1974.Google Scholar
[Mas75] U., Massari. Frontiere orientate di curvatura media assegnata in Lp. Rend. Sem. Mat. Univ. Padova, 53:37–52, 1975.Google Scholar
[Mat95] P., Mattila. Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifability, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge, Cambridge University Press, 1995. xii+343 pp.Google Scholar
[McC98] R. J., McCann. Equilibrium shapes for planar crystals in an external field. Comm. Math. Phys., 195(3):699–723, 1998.Google Scholar
[Mir65] M., Miranda. Sul minimo dell'integrale del gradiente di una funzione. Ann. Scuola Norm. Sup. Pisa (3), 19:626–665, 1965.Google Scholar
[Mir67] M., Miranda. Comportamento delle successioni convergenti di frontiere minimali. Rend. Sem. Mat. Univ. Padova, 38:238257, 1967.Google Scholar
[Mir71] M., Miranda. Frontiere minimali con ostacoli. Ann. Univ. Ferrara Sez. VII (N.S.), 16:29–37, 1971.Google Scholar
[MM83] U., Massari and M., Miranda. A remark on minimal cones. Boll. Un. Mat. Ital. A (6), 2(1):123–, 125.
[MM84] U., Massari and M., Miranda. Minimal Surfaces of Codimension One. North-Holland Mathematics Studies, 91. Notas de Matematica [Mathematical Notes], 95. Amsterdam, North-Holland Publishing Co., 1984.xiii+243 pp.Google Scholar
[Mor66] C. B., Morrey Jr, Multiple Integrals in the Calculus of Variations. Berlin, Heidelberg, New York, Springer-Verlag, 1966.Google Scholar
[Mor90] F., Morgan. A sharp counterexample on the regularity of Φ-minimizing hypersurfaces. Bull. Amer. Math. Soc. (N.S.), 22(2):295–299. 1990Google Scholar
[Mor94] F., Morgan. Soap bubbles in ℝ2 and in surfaces. Pacific J. Math., 165(2):347–361, 1994.Google Scholar
[Mor09] F., Morgan. Geometric Measure Theory. A Beginner's Guide. Fourth edition. Amsterdam, Elsevier/Academic Press, 2009. viii+249 pp.Google Scholar
[MS86] V. D., Milman and G., Schechtman. Asymptotic Theory of Finitedimensional Normed Spaces. With an appendix by M. Gromov. Number 1200 in Lecture Notes in Mathematics. Berlin, Springer-Verlag, 1986. viii+156 pp.Google Scholar
[MW02] F., Morgan and W., Wichiramala. The standard double bubble is the unique stable double bubble in ℝ2. Proc. Amer. Math. Soc., 130(9):2745–2751, 2002.Google Scholar
[Pao98] E., Paolini. Regularity for minimal boundaries in ℝnwith mean curvature in ℝn. Manuscripta Math., 97(1):15–35.1998.Google Scholar
[Rei60] E. R., Reifenberg. Solution of the Plateau problem for m-dimensional surfaces of varying topological type. Acta Math., 104:1–92, 1960.Google Scholar
[Rei64a] E. R., Reifenberg. An epiperimetric inequality related to the analyticity of minimal surfaces. Ann. of Math., 80(2):1–14, 1964.Google Scholar
[Rei64b] E. R., Reifenberg. On the analyticity of minimal surfaces. Ann. of Math., 80(2):15–21, 1964.Google Scholar
[Rei08] B. W., Reichardt. Proof of the double bubble conjecture in ℝn. J. Geom. Anal., 18(1):172–191, 2008.Google Scholar
[RHLS03] B. W., Reichardt, C., Heilmann, Y. Y., Lai, and A., Spielman. Proof of the double bubble conjecture in ℝ4 and certain higher dimensional cases. Pacific J. Math., 208(2), 2003.Google Scholar
[Roc70] R. T., Rockafellar. Convex Analysis, volume 28 of Princeton Mathematical Series. Princeton, NJ, Princeton University Press, 1970. xviii+451 pp.Google Scholar
[Sim68] J., Simons. Minimal varieties in Riemannian manifolds. Ann. Math., 88(1):62–105, 1968.Google Scholar
[Sim73] P., Simoes. A Class of Minimal Cones in ℝn, n ≥ 8, that Minimize Area. PhD thesis, University of California, Berkeley, 1973.Google Scholar
[Sim83] L., Simon. Lectures on Geometric Measure Theory, volume 3 of Proceedings of the Centre for Mathematical Analysis. Canberra, Australian National University, Centre for Mathematical Analysis, 1983. vii+272 pp.Google Scholar
[Sim96] L., Simon. Theorems on Regularity and Singularity of Energy Minimizing Maps. Basel, Boston, Berlin, Birkhaüser-Verlag, 1996.Google Scholar
[Spa09] E. N., Spadaro. Q-valued Functions and Approximation of Minimal Currents. PhD thesis, Universität Zürich, 2009.Google Scholar
[Spe11] D., Spector. Simple proofs of some results of Reshetnyak. Proc. A mer. Math. Soc., 139:1681–1690, 2011.Google Scholar
[Spi65] M., Spivak. Calculus on Manifolds. A Modern Approach to Classical Theorems of Advanced Calculus. NewYork, Amsterdam, W.A.Benjamin, Inc., 1965. xii+144 pp.Google Scholar
[SS82] R., Schoen and L., Simon. A new proof of the regularity theorem for rectifiable currents which minimize parametric elliptic functionals. Indiana Univ. Math. J., 31(3):415–434, 1982.Google Scholar
[SSA77] R., Schoen, L., Simon, and F. J., Almgren JrRegularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational in tegrals. i, ii. Acta Math., 139(3–4):217–265, 1977.Google Scholar
[Str79] K., Stromberg. The Banach–Tarski paradox. Amer. Math. Monthly, 86(3):151–161, 1979.Google Scholar
[SZ98] P., Sternberg and K., Zumbrun. A Poincaré inequality with applications to volume-constrained area-minimizing surfaces. J. Reine Angew. Math., 503:63–85, 1998.Google Scholar
[SZ99] P., Sternberg and K., Zumbrun. On the connectedness of boundaries of sets minimizing perimeter subject to a volume constraint. Comm. Anal. Geom., 7(1):199–220, 1999.Google Scholar
[Tam82] I., Tamanini. Boundaries of Caccioppoli sets with Hölder-continuous normal vector. J. Reine Angew. Math., 334:27–39, 1982.Google Scholar
[Tam84] I., Tamanini. Regularity Results for Almost Minimal Oriented Hypersurfaces in ℝN. Quaderni del Dipartimento di Matematica dell'Università di Lecce. Lecce, Università di Lecce, 1984.Google Scholar
[Tam98] I., Tamanini. Counting elements of least-area partitions. Atti Sem. Mat. Fis. Univ. Modena, 46(suppl.):963–969, 1998.Google Scholar
[Tay76] J. E., Taylor. The structure of singularities in soap-bubble-like and soapflm-like minimal surfaces. Ann. of Math. (2), 103(3):489–539, 1976.Google Scholar
[Tay78] J. E., Taylor. Crystalline variational problems. Bull. Am. Math. Soc., 84(4):568–588, 1978.Google Scholar
[Wen91] H. C., Wente. A note on the stability theorem of J. L. Barbosa and M. do Carmo for closed surfaces of constant mean curvature. Pacific J. Math., 147(2):375–379, 1991.Google Scholar
[Whi] B., White. Regularity of singular sets for Plateau-type problems. See the announcement on author's webpage, math.stanford.edu/∼white/bibrev.htm.
[Whi96] B., White. Existence of least-energy confgurations of immiscible fluids. J. Geom. Analysis, 6:151–161, 1996.Google Scholar
[Wic04] W., Wichiramala. Proof of the planar triple bubble conjecture. J. Reine Angew. Math., 567:1–49, 2004.Google Scholar
[WP94] D., Weaire and R., Phelan. A counter-example to Kelvin's conjecture on minimal surfaces. Phil. Mag. Lett., 69:107–110, 1994.Google Scholar
[Wul01] G., Wulf. Zur Frage der Geschwindigkeit des Wachsturms und der aufösungder Kristall-Flächen. Z. Kristallogr., 34:449–530, 1901.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Francesco Maggi, Università degli Studi di Firenze, Italy
  • Book: Sets of Finite Perimeter and Geometric Variational Problems
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139108133.037
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Francesco Maggi, Università degli Studi di Firenze, Italy
  • Book: Sets of Finite Perimeter and Geometric Variational Problems
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139108133.037
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Francesco Maggi, Università degli Studi di Firenze, Italy
  • Book: Sets of Finite Perimeter and Geometric Variational Problems
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139108133.037
Available formats
×