Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-03T04:40:52.451Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2013

Hagai Netzer
Affiliation:
Tel-Aviv University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, M., Ajello, M., Allafort, A., et al. 2011, “The second catalog of active galactic nuclei detected by the Fermi large area telescope,” ApJ, 743, 171.CrossRefGoogle Scholar
Alonso-Herrero, A., Ramos Almeida, C., Mason, R., et al. 2011, “Torus and active galactic nucleus properties of nearby Seyfert galaxies: Results from fitting infrared spectral energy distributions and spectroscopy,” ApJ 736, 82.CrossRefGoogle Scholar
Antonucci, R. 1993, “Unified models for active galactic nuclei and quasars,” AnnRevAstAp, 31, 473.Google Scholar
Arav, N., Moe, M., Costantini, E., et al. 2008, “Measuring column densities in quasar outflows: VLT observations of QSO 2359-1241,” ApJ, 681, 954.CrossRefGoogle Scholar
Assef, R. J., Denney, K. D., Kochanek, C. S., et al. 2011, “Black hole mass estimates based on C IV are consistent with those based on the Balmer lines,” ApJ, 742, 93.CrossRefGoogle Scholar
Baldwin, J. A. 1977, “Luminosity indicators in the spectra of quasi-stellar objects,” ApJ, 214, 679.CrossRefGoogle Scholar
Baldwin, J. A., Ferland, G. J., Korista, K. T., et al. 2004, “The origin of Fe II emission in active galactic nuclei,” ApJ, 615, 610.CrossRefGoogle Scholar
Barthel, P., & van Bemmel, I. 2003, “Radio galaxies: Unification and dust properties,” NAR, 47, 199.CrossRefGoogle Scholar
Becker, R. H., White, R. L., & Helfand, D. J., et al. 1995, “The FIRST survey: Faint images of the radio sky at twenty centimeters,” ApJ 450, 559.CrossRefGoogle Scholar
Bentz, M. C., Peterson, B. M., Netzer, H., et al. 2009, “The radius–luminosity relationship for active galactic nuclei: The effect of host-galaxy starlight on luminosity measurements. II. The full sample of reverberation-mapped AGNs,” ApJ, 697, 160.CrossRefGoogle Scholar
Bernuzzi, S., Nagar, A., & Zenginoğlu, A. 2011, “Binary black hole coalescence in the large-mass-ratio limit: The hyperboloidal layer method and waveforms at null infinity,” PRD, 84, 084026.CrossRefGoogle Scholar
Best, P. N., Kauffmann, G., Heckman, T. M., et al. 2005, “The host galaxies of radioloud active galactic nuclei: Mass dependences, gas cooling and active galactic nuclei feedback,” MNRAS, 362, 25.CrossRefGoogle Scholar
Blaes, O., Hubeny, I., Agol, E., et al. 2001, “Non-LTE, relativistic accretion disk fits to 3C 273 and the origin of the Lyman limit spectral break,” ApJ, 563, 560.CrossRefGoogle Scholar
Blaes, O. 2007, “The central engine of active galactic nuclei,” ASPC, 373, 75.Google Scholar
Blandford, R. D. 1990, “Physical processes in active galactic nuclei,” SAAS-FEE Advanced Course 20 on Active Galactic Nuclei, Springer, 161.CrossRefGoogle Scholar
Blanton, M. R., Hogg, D. W., Bahcall, N. A., et al. 2003, “The broadband optical properties of galaxies with redshifts 0.02 < z < 0.22,” ApJ, 594, 186.CrossRefGoogle Scholar
Blecha, L., Cox, T. J., Loeb, A., & Hernquist, L. 2011, “Recoiling black holes in merging galaxies: Relationship to active galactic nucleus lifetimes, starbursts and the MBH-*relation,” MNRAS, 412, 2154.CrossRefGoogle Scholar
Bonfield, D. G., Jarvis, M. J., Hardcastle, M. J., et al. 2011, “Herschel-ATLAS: The link between accretion luminosity and star formation in quasar host galaxies,” MNRAS, 416, 13.Google Scholar
Boroson, T. A., & Green, R. F. 1992, “The emission-line properties of low-redshift quasistellar objects,” ApJ, 80, 109.CrossRefGoogle Scholar
Böttcher, M., Basu, S., Joshi, M., et al. 2007, “The WEBT campaign on the blazar 3C 279 in 2006,” ApJ, 670, 968.CrossRefGoogle Scholar
Bottorff, M. C., & Ferland, G. J. 2000, “Magnetic confinement, magnetohydrodynamic waves and smooth line profiles in active galactic nuclei,” MNRAS, 316, 103.CrossRefGoogle Scholar
Brammer, G. B., Whitaker, K. E., van Dokkum, P. G., et al. 2009, “The dead sequence: A clear bimodality in galaxy colors from z = 0 to z = 2.5,” ApJL, 706, L173.CrossRefGoogle Scholar
Cano-Díaz, M., Maiolino, R., Marconi, A., et al. 2012, “Observational evidence of quasar feedback quenching star formation at high redshift,” A&A, 537, L8.Google Scholar
Cao, X. 2007, “Growth of massive black holes during radiatively inefficient accretion phases,” ApJ, 659, 950.CrossRefGoogle Scholar
Cao, X. 2009, “An accretion disc-corona model for X-ray spectra of active galactic nuclei,” MNRAS, 394, 207.CrossRefGoogle Scholar
Cao, X. 2010, “On the disappearance of the broad-line region in low-luminosity active galactic nuclei: The role of the outflows from advection dominated accretion flows,” ApJ, 724, 855.CrossRefGoogle Scholar
Capellupo, D. M., Hamann, F., Shields, J. C., et al. 2011, “Variability in quasar broad absorption line outflows – I. Trends in the short-term versus long-term data,” MNRAS, 413, 908.CrossRefGoogle Scholar
Cardiel, N., Elbaz, D., Schiavon, R. P., et al. 2003, “A multiwavelength approach to the star formation rate estimation in galaxies at intermediate redshifts,” ApJ, 584, 76.CrossRefGoogle Scholar
Chelouche, D., & Netzer, H. 2005, “Dynamical and spectral modeling of the ionized gas and nuclear environment in NGC 3783,” ApJ, 625, 95.CrossRefGoogle Scholar
Cisternas, M., Jahnke, K., Inskip, K. J., et al. 2011, “The bulk of the black hole growth since z ~ 1 occurs in a secular universe: No major merger-AGN connection,” ApJ, 726, 57.CrossRefGoogle Scholar
Cid Fernandes, R., Heckman, T., Schmitt, H., et al. 2001, “Empirical diagnostics of the starburst-AGN connection,” ApJ, 558, 81.CrossRefGoogle Scholar
Cid Fernandes, R., Stasińska, G., Mateus, A., et al. 2011, “A comprehensive classification of galaxies in the Sloan Digital Sky Survey: How to tell true from fake AGN?,” MNRAS, 413, 1687.CrossRefGoogle Scholar
Cisternas, M., Jahnke, K., Bongiorno, A., et al. 2011, “Secular evolution and a non-evolving black-hole-to-galaxy mass ratio in the last 7 Gyr,” ApJL, 741, L11.CrossRefGoogle Scholar
Clavel, J., Reichert, G. A., Alloin, D., et al. 1991, “Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. I – an 8 month campaign of monitoring NGC 5548 with IUE,” ApJ, 366, 64.CrossRefGoogle Scholar
Collin, S., & Joly, M. 2000, “The Fe II problem in NLS1s,” NAR, 44, 531.CrossRefGoogle Scholar
Collin, S., & Kawaguchi, T. 2004, “Super-Eddington accretion rates in narrow line Seyfert 1 galaxies,” A&A, 426, 797.Google Scholar
Croom, S. M., Smith, R. J., Boyle, B. J., et al. 2004, “The 2dF QSO redshift survey – XII. The spectroscopic catalogue and luminosity function,” MNRAS, 349, 1397.CrossRefGoogle Scholar
Croom, S. M., Smith, R. J., Boyle, B. J., et al. 2004, MNRAS, 349, 1397.CrossRef
Croom, S. M., et al. 2008, “The 2dF-SDSS LRG and QSO survey: The spectroscopic QSO catalogue,” MNRAS, 392, 19.CrossRefGoogle Scholar
Croom, S. M., Richards, G. T., Shanks, T., et al. 2009, “The 2dF-SDSS LRG and QSO survey: The QSO luminosity function at 0.4 < z < 2.6,” MNRAS, 399, 1755.CrossRefGoogle Scholar
Croom, S. M. 2011, “Do quasar broad-line velocity widths add any information to virial black hole mass estimates?ApJ 736, 161.CrossRefGoogle Scholar
Crenshaw, D. M., Kraemer, S. B., & George, I. M. 2003, “Mass loss from the nuclei of active galaxies,” ARAA, 41, 117.CrossRefGoogle Scholar
Daddi, E., Dickinson, M., Morrison, G., et al. 2007, “Multiwavelength study of massive galaxies at z 2. I. Star formation and galaxy growth,” ApJ, 670, 156.CrossRefGoogle Scholar
Dasyra, K. M., Ho, L. C., Netzer, H., et al. 2011, “A view of the narrow-line region in the infrared: Active galactic nuclei with resolved fine-structure lines in the Spitzer archive,” ApJ, 740, 94.CrossRefGoogle Scholar
Dovčiak, M., Karas, V., & Yaqoob, T. 2004, “An extended scheme for fitting X-ray data with accretion disk spectra in the strong gravity regime,” ApJS, 153, 205.CrossRefGoogle Scholar
Davidson, K., & Netzer, H. 1979, “The emission lines of quasars and similar objects,” RMP, 51, 715.CrossRefGoogle Scholar
Davis, S. W., Woo, J.-H., & Blaes, O. M. 2007, “The UV continuum of quasars: Models and SDSS spectral slopes,” ApJ, 668, 682.CrossRefGoogle Scholar
Davis, S. W., & Laor, A. 2011, “The radiative efficiency of accretion flows in individual active galactic nuclei,” ApJ, 728, 98.CrossRefGoogle Scholar
Dopita, M. A., Groves, B. A., Sutherland, R. S., et al. 2002, “Are the narrow-line regions in active galaxies dusty and radiation pressure dominated?ApJ 572, 753.CrossRefGoogle Scholar
Dutton, A. A., van den Bosch, F. C., & Dekel, A. 2010, “On the origin of the galaxy star-formation-rate sequence: Evolution and scatter,” MNRAS, 405, 1690.Google Scholar
Emerson, D. 1996, Interpreting Astronomical Spectra, John Wiley.Google Scholar
Elitzur, M. 2008, “The toroidal obscuration of active galactic nuclei,” NAR, 52, 274.CrossRefGoogle Scholar
Elitzur, M., & Ho, L. C. 2009. “On the disappearance of the broad line region in low luminosity active galactic nuclei,” ApJL, ApJL 701, L91–L94.CrossRefGoogle Scholar
Elvis, M., Wilkes, B. J., McDowell, J. C., et al., 1994, “Atlas of quasar energy distributions,” ApJS, 95, 1.CrossRefGoogle Scholar
Elvis, M. 2000, “A structure for quasars,” ApJ, 545, 63.CrossRefGoogle Scholar
Emmering, R. T., Blandford, R. D., & Shlosman, I. 1992, “Magnetic acceleration of broad emission-line clouds in active galactic nuclei,” ApJ, 385, 460.CrossRefGoogle Scholar
Eracleous, M., & Halpern, J. P. 2003, “Completion of a survey and detailed study of double-peaked emission lines in radio-loud active galactic nuclei,” ApJ, 599, 886.CrossRefGoogle Scholar
Fan, X. 2006, “Evolution of high-redshift quasars,” NAR, 50, 665–671.Google Scholar
Fan, X., Carilli, C. L., & Keating, B. 2006, “Observational constraints on cosmic reionization,” ARAA, 44, 415.CrossRefGoogle Scholar
Fanidakis, N., Baugh, C. M., Benson, A. J., et al. 2011, “Grand unification of AGN activity in the CDM cosmology,” MNRAS, 410, 53.CrossRefGoogle Scholar
Fanidakis, N., Baugh, C. M., Benson, A. J., et al. 2012, “The evolution of active galactic nuclei across cosmic time: What is downsizing?,” MNRAS, 419, 2797.CrossRefGoogle Scholar
Fine, S., Croom, S. M., Bland-Hawthorn, J., et al. 2010. “The CIV linewidth distribution for quasars and its implications for broad-line region dynamics and virial mass estimation,” MNRAS, 409, 591.CrossRefGoogle Scholar
Ferrarese, L., & Merritt, D. A. 2000, “A fundamental relation between supermassive black holes and their host galaxies,” ApJ, 539, L9L12.CrossRefGoogle Scholar
Fosbury, R. 2006, “AGN beyond the 100pc scale,” Physics of Active Galactic Nuclei at all Scales, edited by Danielle, Alloin, Rachel, Johnson, and Paulina, Lira. LNP, 693, 121.CrossRefGoogle Scholar
Frank, J., King, A., & Raine, D. J. 2002, Accretion Power in Astrophysics: Cambridge University Press, Third Edition.CrossRefGoogle Scholar
Fritz, J., Franceschini, A., & Hatziminaoglou, E. 2006, “Revisiting the infrared spectra of active galactic nuclei with a new torus emission model,” MNRAS, 366, 767.CrossRefGoogle Scholar
Gebhardt, K., Bender, R., Bower, G., et al. 2000, “A relationship between nuclear black hole mass and galaxy velocity dispersion,” ApJ, 539, L13.CrossRefGoogle Scholar
Gilli, R., Comastri, A., & Hasinger, G. 2007, “The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era,” A&A, 463, 79.Google Scholar
Greene, J. E., & Ho, L. C. 2005, “A comparison of stellar and gaseous kinematics in the nuclei of active galaxies,” ApJ, 627, 721.CrossRefGoogle Scholar
Groves, B., Kewley, L., Kauffmann, G., et al. 2006, “An SDSS view of type-2 AGN classification,” NAR, 50, 743.CrossRefGoogle Scholar
Grupe, D., Komossa, S., Leighly, K. M., & Page, K. L. 2010, “The simultaneous optical-to-X-ray spectral energy distribution of soft X-ray selected active galactic nuclei observed by swift,” ApJS, 187, 64.CrossRefGoogle Scholar
Gúltekin, K., Richstone, D. O., Gebhardt, K., et al. 2009, “The M-σ and M-L relations in galactic bulges, and determinations of their intrinsic scatter,” ApJ, 698, 198.CrossRefGoogle Scholar
Haas, M., Siebenmorgen, R., Schulz, B., et al. 2005, “Spitzer IRS spectroscopy of 3CR radio galaxies and quasars: Testing the unified schemes,” A&A, 442, L39.Google Scholar
Hamann, F., & Ferland, G. 1999, “Elemental abundances in quasistellar objects: Star formation and galactic nuclear evolution at high redshifts,” ARAA, 37, 487.CrossRefGoogle Scholar
Hasinger, G., Miyaji, T., & Schmidt, M. 2005, “Luminosity-dependent evolution of soft X-ray selected AGN. New Chandra and XMM-Newton surveys,” A&A, 441, 417.Google Scholar
Heckman, T. M., & Kauffmann, G. 2006, “The host galaxies of AGN in the Sloan Digital Sky Survey,” NAR, 50, 677.CrossRefGoogle Scholar
Herrnstein, J. R., Moran, J. M., Greenhill, L. J., et al. 1999, “A geometric distance to the galaxy NGC4258 from orbital motions in a nuclear gas disk,” Nature, 400, 539.CrossRefGoogle Scholar
Hirashita, H., Buat, V., & Inoue, A. K. 2003, “Star formation rate in galaxies from UV, IR, and H estimators,” A&A, 410, 83.Google Scholar
Ho, L. C. 2008, “Nuclear activity in nearby galaxies,” ARAA, 46, 475.CrossRefGoogle Scholar
Hopkins, P. F., Murray, N., & Thompson, T. A. 2009, “The small scatter in BH-host correlations and the case for self-regulated BH growth,” MNRAS, 398, 303.CrossRefGoogle Scholar
Hopkins, P. F., & Elvis, M. 2010, “Quasar feedback: More bang for your buck,” MNRAS, 401, 7.CrossRefGoogle Scholar
Hubeny, I., Blaes, O., Krolik, J. H., et al. 2001, “Non-LTE models and theoretical spectra of accretion disks in active galactic nuclei. IV. Effects of Compton scattering and metal opacities,” ApJ, 559, 680.CrossRefGoogle Scholar
Jogee, S. R. 2006, “The fueling and evolution of AGN: Internal and external triggers,” Physics of Active Galactic Nuclei at all Scales, edited by Danielle, Alloin, Rachel, Johnson, and Paulina, Lira, LNP, 693, 143.CrossRefGoogle Scholar
Kennicutt, R. C. Jr. 1998, “Star formation in galaxies along the Hubble sequence,” ARAA, 36, 189.CrossRefGoogle Scholar
Kennicutt, R. C. Jr., Hao, C.-N., Calzetti, D., et al. 2009, “Dust-corrected star formation rates of galaxies. I. Combinations of Hα and infrared tracers,” ApJ, 703, 1672.CrossRefGoogle Scholar
Kormendy, J., & Richstone, D. 1995, “Inward bound the search for supermassive black holes in galactic nuclei,” ARAA, 33, 581.CrossRefGoogle Scholar
Kormendy, J., & Kennicutt, R. C. Jr. 2004, “Secular evolution and the formation of pseudobulges in disk galaxies,” ARAA, 42, 603.CrossRefGoogle Scholar
Kormendy, J., Fisher, D. B., Cornell, M. E., et al. 2009, “Structure and formation of elliptical and spheroidal galaxies,” ApJS, 182, 216.CrossRefGoogle Scholar
Krolik, J. H., 1999, Active Galactic Nuclei, Princeton University Press.Google Scholar
Kuo, C. Y., Braatz, J. A., Condon, J. J., et al. 2011, “The megamaser cosmology project. III. Accurate masses of seven supermassive black holes in active galaxies with circumnuclear megamaser disks,” ApJ, 727, 20.CrossRefGoogle Scholar
Kaastra, J. S. 2008, “High spectral resolution X-ray observations of AGN,” AN, 329, 162.Google Scholar
Kauffmann, G., Heckman, T. M., Tremonti, C., et al. 2003, “The host galaxies of active galactic nuclei,” MNRAS, 346, 1055.CrossRefGoogle Scholar
Kauffmann, G., Heckman, T. M., & Best, P. N. 2008, “Radio jets in galaxies with actively accreting black holes: New insights from the SDSS,” MNRAS, 384, 953.CrossRefGoogle Scholar
Kauffmann, G., & Heckman, T. M. 2009, “Feast and famine: Regulation of black hole growth in low-redshift galaxies,” MNRAS, 397, 135.CrossRefGoogle Scholar
Kaspi, S., & Netzer, H. 1999, “Modeling variable emission lines in active galactic nuclei: Method and application to NGC 5548,” ApJ, 524, 71.CrossRefGoogle Scholar
Kaspi, S., Smith, P. S., Netzer, H., et al. 2000, “Reverberation measurements for 17 quasars and the size-mass-luminosity relations in active galactic nuclei,” ApJ, 533, 631.CrossRefGoogle Scholar
Kaspi, S., Maoz, D., Netzer, H., et al. 2005, “The relationship between luminosity and broad-line region size in active galactic nuclei,” ApJ, 629, 61.CrossRefGoogle Scholar
Kaspi, S., Brandt, W. N., Maoz, D., et al. 2007, “Reverberation mapping of high-luminosity quasars: First results,” ApJ, 659, 997.CrossRefGoogle Scholar
Kawaguchi, T., Shimura, T., & Mineshige, S. 2001, “Broadband spectral energy distributions of active galactic nuclei from an accretion disk with advective coronal flow,” ApJ, 546, 966.CrossRefGoogle Scholar
Kewley, L. J., Groves, B., Kauffmann, G., et al. 2006, “The host galaxies and classification of active galactic nuclei,” MNRAS, 372, 961.CrossRefGoogle Scholar
King, A. R. 2010, “Black hole outflows,” MNRAS, 402, 1516.CrossRefGoogle Scholar
Kishimoto, M., Antonucci, R., Blaes, O., et al. 2008, “The characteristic blue spectra of accretion disks in quasars as uncovered in the infrared,” Nature, 454, 492.CrossRefGoogle ScholarPubMed
Korista, K. T., & Goad, M. R. 2000, “Locally optimally emitting clouds and the variable broad emission line spectrum of NGC 5548,” ApJ, 536, 284.CrossRefGoogle Scholar
Korista, K. T., & Goad, M. R. 2004, “What the optical recombination lines can tell us about the broad-line regions of active galactic nuclei,” ApJ, 606, 749.CrossRefGoogle Scholar
Lawrence, A., & Elvis, M. 2010, “Misaligned disks as obscurers in active galaxies,” ApJ, 714, 561.CrossRefGoogle Scholar
Li, C., & White, S. D. M. 2009, “The distribution of stellar mass in the low-redshift universe,” MNRAS, 398, 2177.CrossRefGoogle Scholar
Lister, M. L., Aller, M., Aller, H., et al. 2011, “γ-Ray and parsec-scale jet properties of a complete sample of blazars from the MOJAVE program,” ApJ, 742, 27.CrossRefGoogle Scholar
Madau, P. 1988, “Thick accretion disks around black holes and the UV/soft X-ray excess in quasars,” ApJ, 327, 116.CrossRefGoogle Scholar
Maiolino, R., Risaliti, G., Salvati, M., et al. 2010, “Comets orbiting a black hole,” A&A, 517, A47.Google Scholar
Maoz, D. 2007, “Low-luminosity active galactic nuclei: Are they UV faint and radio loud?,” MNRAS, 377, 1696.CrossRefGoogle Scholar
Marconi, A., Risaliti, G., Gilli, R., et al. 2004, “Local supermassive black holes, relics of active galactic nuclei and the X-ray background,” MNRAS, 351, 169.CrossRefGoogle Scholar
Marconi, A., Axon, D. J., Maiolino, R., et al. 2008, “The effect of radiation pressure on virial black hole mass estimates and the case of narrow-line Seyfert 1 galaxies,” ApJ, 678, 693.CrossRefGoogle Scholar
Marziani, P., & Sulentic, J. W. 2012, “Quasar outflows in the 4D eigenvector 1 context,” AstRv, 7, 33.Google Scholar
Matsuoka, K., Nagao, T., Marconi, A., et al. 2011, “The mass-metallicity relation of SDSS quasars,” A&A, 527, A100.Google Scholar
McHardy, I. 2010, “X-ray variability of AGN and relationship to galactic black hole binary systems,” LNP, 794, 203.Google Scholar
McLure, R. J., & Dunlop, J. S. 2004, “The cosmological evolution of quasar black hole masses,” MNRAS, 352, 1390.CrossRefGoogle Scholar
McConnell, N. J., Ma, C.-P., Gebhardt, K., et al. 2011, “Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies,” Nature, 480, 215.CrossRefGoogle ScholarPubMed
Merloni, A., Körding, E., Heinz, S., et al. 2006, “Why the fundamental plane of black hole activity is not simply a distance driven artifact,” NAR, 11, 567.CrossRefGoogle Scholar
Merloni, A., & Heinz, S. 2007, “Measuring the kinetic power of active galactic nuclei in the radio mode,” MNRAS, 381, 589.CrossRefGoogle Scholar
Merloni, A., & Heinz, S. 2008, “A synthesis model for AGN evolution: Supermassive black holes growth and feedback modes,” MNRAS, 388, 1011.Google Scholar
Miller, L., Turner, T. J., & Reeves, J. N. 2008. An absorption origin for the X-ray spectral variability of MCG-6-30-15. A&A 483, 437–452.Google Scholar
Miller, L., Turner, T. J., & Reeves, J. N. 2009, “The absorption-dominated model for the X-ray spectra of typeI active galaxies: MCG-6-30-15,” MNRAS, 399, L69.CrossRefGoogle Scholar
Mo, H., van den Bosch, F., & White, S. 2010, Galaxy formation and evolution, Cambridge University Press.CrossRefGoogle Scholar
Müller-Sánchez, F., Prieto, M. A., Hicks, E. K. S., et al. 2011, “Outflows from active galactic nuclei: Kinematics of the narrow-line and coronal-line regions in Seyfert galaxies,” ApJ, 739, 69.CrossRefGoogle Scholar
Mor, R., & Trakhtenbrot, B. 2011, “Hot-dust clouds with pure-graphite composition around type-I active galactic nuclei,” ApJL, 737, L36.CrossRefGoogle Scholar
Mor, R., & Netzer, H. 2012, “Hot graphite dust and the infrared spectral energy distribution of active galactic nuclei,” MNRAS, 420, 526.CrossRefGoogle Scholar
Narayan, R., & Quataert, E. 2005, “Black hole accretion,” Science, 307, 77.CrossRefGoogle ScholarPubMed
Narayan, R., & McClintock, J. E. 2008, “Advection-dominated accretion and the black hole event horizon,” NAR, 51, 733.CrossRef
Negrete, C. A., Dultzin, D., Marziani, P., & Sulentic, J. W. 2012. “Broad-line region physical conditions in extreme population a quasars: A method to estimate central black hole mass at high redshift,” ApJ, 757, 62.CrossRefGoogle Scholar
Netzer, H. 1985, “Quasar discs. I – The Baldwin effect,” MNRAS, 216, 63.CrossRefGoogle Scholar
Netzer, H. 1990, “AGN emission lines,” SAAS-FEE advanced course 20 on active galactic nuclei, Springer, 57.Google Scholar
Netzer, H., Laor, A., & Gondhalekar, P. M. 1992, “Quasar discs. III – Line and continuum correlations,” MNRAS, 254, 15.CrossRefGoogle Scholar
Netzer, H., & Peterson, B. M. 1997, “Reverberation mapping and the physics of active galactic nuclei,” ATS, 218, 85.Google Scholar
Netzer, H., Kaspi, S., Behar, E., et al. 2003, “The ionized gas and nuclear environment in NGC 3783. IV. Variability and modeling of the 900 kilosecond chandra spectrum,” ApJ, 599, 933.CrossRefGoogle Scholar
Netzer, H., & Trakhtenbrot, B. 2007, “Cosmic evolution of mass accretion rate and metallicity in active galactic nuclei,” ApJ, 654, 754.CrossRefGoogle Scholar
Netzer, H., Lutz, D., Schweitzer, M., et al. 2007a, “Spitzer quasar and ULIRG evolution study (QUEST). II. The spectral energy distributions of palomar-green quasars,” ApJ, 666, 806.CrossRef
Netzer, H., Lira, P., Trakhtenbrot, B., et al. 2007b, “Black hole mass and growth rate at high redshift,” ApJ, 671, 1256.CrossRef
Netzer, H. 2008, “Ionized gas in active galactic nuclei,” NAR, 52, 257.CrossRefGoogle Scholar
Netzer, H. 2009, “Accretion and star formation rates in low-redshift type II active galactic nuclei,” MNRAS, 399, 1907.CrossRefGoogle Scholar
Netzer, H., & Marziani, P. 2010, “The effect of radiation pressure on emission-line profiles and black hole mass determination in active galactic nuclei,” ApJ, 724, 318.CrossRefGoogle Scholar
Osterbrock, D. E., & Ferland, G. J. 2006, Astrophysics of gaseous nebulae and active galactic nuclei, University Science Books.Google Scholar
Pérez-González, P. G., Rieke, G. H., Villar, V., et al. 2008, “The stellar mass assembly of galaxies from z = 0 to z = 4: Analysis of a sample selected in the rest-frame near-infrared with spitzer,” ApJ, 675, 234.CrossRefGoogle Scholar
Peterson, B. M. 1997, An introduction to active galactic nuclei, Cambridge University Press.CrossRefGoogle Scholar
Peterson, B. M., & Bentz, M. C. 2006, “Black hole masses from reverberation mapping,” NewAsRev, 50, 796.Google Scholar
Peterson, B. M. 2008, “The central black hole and relationships with the host galaxy,” NewAsRev, 52, 240.Google Scholar
Proga, D., & Kallman, T. R. 2004, “Dynamics of line-driven disk winds in active galactic nuclei. II. Effects of disk radiation,” ApJ, 616, 688.CrossRefGoogle Scholar
Quintilio, R., & Viegas, S. M. 1997, “Theoretical emission-line profiles of active galactic nuclei and the unified model. I. The face-on torus,” ApJ, 474, 616.CrossRefGoogle Scholar
Reynolds, C. S., & Nowak, M. A. 2003, “Fluorescent iron lines as a probe of astrophysical black hole systems,” Physics Reports, 377, 389.CrossRefGoogle Scholar
Richards, G. T., Lacy, M., Storrie-Lombardi, , et al. 2006. “Spectral energy distributions and multiwavelength selection of type 1 quasars,” ApJS Supp, 166, 470–497.CrossRefGoogle Scholar
Richards, G. T., Nichol, R. C., Gray, A. G., et al. 2008, “Efficient photometric selection of quasars from the sloan digital sky survey: 100,000 z < 3 quasars from data release one,” ApJS, 155, 257.CrossRefGoogle Scholar
Richards, G. T., Myers, A. D., Gray, A. G., et al. 2009. “Efficient photometric selection of quasars from the sloan digital sky survey. II. ~1,000,000 quasars from data release 6,” ApJS, 180, 67.CrossRefGoogle Scholar
Risaliti, G., Salvati, M., & Marconi, A. 2011, “[O III] equivalent width and orientation effects in quasars,” MNRAS, 411, 2223.CrossRefGoogle Scholar
Robinson, A. 1995, “The profiles and response functions of broad emission lines in active galactic nuclei,” MNRAS, 276, 933.CrossRefGoogle Scholar
Robson, I. 1996, Active Galactic Nuclei, John Wiley.Google Scholar
Ross, R. R., & Fabian, A. C. 2005, “A comprehensive range of X-ray ionized-reflection models,” MNRAS, 358, 211.CrossRefGoogle Scholar
Rosario, D. J., Santini, P., Lutz, D., et al. 2012, “The mean star formation rate of X-ray selected active galaxies and its evolution from z ~ 2.5: Results from PEP-Herschel,” A&A, 545, A45.Google Scholar
Różańska, A., & Madej, J. 2008, “Models of the iron Kα fluorescent line and the Compton Shoulder in irradiated accretion disc spectra,” MNRAS, 386, 1872.CrossRefGoogle Scholar
Rybicky, G. B., & Lightman, A. P. 1979, Radiative processes in astrophysics, John Wiley.Google Scholar
Salim, S., Rich, R. M., Charlot, S., et al. 2007, “UV star formation rates in the local universe,” ApJS, 173, 267.CrossRefGoogle Scholar
Sani, E., Lutz, D., Risaliti, G., et al. 2010, “Enhanced star formation in narrow-line Seyfert 1 active galactic nuclei revealed by Spitzer,” MNRAS, 403, 1246.CrossRefGoogle Scholar
Sani, E., Marconi, A., Hunt, L. K., et al. 2011, “The Spitzer/IRAC view of black hole-bulge scaling relations,” MNRAS, 413, 1479.CrossRefGoogle Scholar
Santini, P., Rosario, D. J., Shao, L., et al. 2012, “Enhanced star formation rates in AGN hosts with respect to inactive galaxies from PEP–Herschel observations,” A&A, 540, A109.Google Scholar
Schawinski, K., Urry, C. M., Virani, S., et al. 2010, “Galaxy Zoo: The fundamentally different co-evolution of supermassive black holes and their early- and late-type host galaxies,” ApJ, 711, 284.CrossRefGoogle Scholar
Shakura, N. I., & Sunyaev, R. A. 1973, “Black holes in binary systems. Observational appearance,” A&A, 24, 337.Google Scholar
Shang, Z., Brotherton, M. S., Wills, B. J., et al. 2011, “The next generation atlas of quasar spectral energy distributions from radio to X-rays,” ApJS, 196, 2.CrossRefGoogle Scholar
Shankar, F. 2009, “The demography of supermassive black holes: Growing monsters at the heart of galaxies,” NAR, 53, 57.CrossRefGoogle Scholar
Shankar, F., Crocce, M., Miralda-Escudé, J., et al. 2010, “On the radiative efficiencies, Eddington ratios, and duty cycles of luminous high-redshift quasars,” ApJ, 718, 231.CrossRefGoogle Scholar
Schmidt, M., et al. 2012, “The color variability of quasars,” ApJ, 744, 147.CrossRefGoogle Scholar
Schweitzer, M., Lutz, D., Sturm, E., et al. 2006, “Spitzer Quasar and ULIRG Evolution Study (QUEST). I. The origin of the far-infrared continuum of QSOs,” ApJ, 649, 79.CrossRefGoogle Scholar
Shemmer, O., Netzer, H., Maiolino, R., et al. 2004, “Near-infrared spectroscopy of highredshift active galactic nuclei. I. A metallicity-accretion rate relationship,” ApJ, 614, 547.CrossRefGoogle Scholar
Shen, Y., Greene, J. E., Strauss, M. A., et al. 2008, “Biases in virial black hole masses: An SDSS perspective,” ApJ, 680, 169.CrossRefGoogle Scholar
Shen, Y., Liu, X., Greene, J. E., et al. 2011, “Type 2 active galactic nuclei with doublepeaked [O III] lines. II. Single AGNs with complex narrow-line region kinematics are more common than binary AGNs,” ApJ, 735, 48.CrossRefGoogle Scholar
Sigut, T. A. A., & Pradhan, A. K. 2003, “Predicted Fe II emission-line strengths from active galactic nuclei,” ApJS, 145, 15.CrossRefGoogle Scholar
Sijacki, D., Springel, V., & Haehnelt, M. G. 2009, “Growing the first bright quasars in cosmological simulations of structure formation,” MNRAS, 400, 100.CrossRefGoogle Scholar
Sijacki, D., Springel, V., & Haehnelt, M. G. 2011, “Gravitational recoils of supermassive black holes in hydrodynamical simulations of gas-rich galaxies,” MNRAS, 414, 3656.CrossRefGoogle Scholar
Sikora, M., Stawarz, L., & Lasota, J.-P. 2007, “Radio loudness of active galactic nuclei: Observational facts and theoretical implications,” ApJ, 658, 815.CrossRefGoogle Scholar
Sikora, M., Stawarz, L., & Lasota, J.-P. 2008, “Radio-loudness of active galaxies and the black hole evolution,” NAR, 51, 891.CrossRefGoogle Scholar
Soltan, A. 1982, “Masses of quasars,” MNRAS, 200, 115.CrossRefGoogle Scholar
Stamerra, A., J., Becerra, G., Bonnoli, L., Maraschi, F., Tavecchio, D., Mazin, K., Saito, for the MAGIC Collaboration, Y., Tanaka, D., Wood, and for the Fermi/LAT Collaboration 2011. Challenging the high-energy emission zone in FSRQs. ArXiv e-prints.Google Scholar
Stern, J., & Laor, A. 2012, “Type 1 AGN at low z – II. The relative strength of narrow lines and the nature of intermediate type AGN,” MNRAS, 426, 2703.CrossRefGoogle Scholar
Sturm, E., González-Alfonso, E., Veilleux, S., et al. 2011, “Massive molecular outflows and negative feedback in ULIRGs observed by Herschel–PACS,” ApJL, 733, L16.CrossRefGoogle Scholar
Sulentic, J. W., Marziani, P., & Dultzin-Hacyan, D. 2000, “Phenomenology of broad emission lines in active galactic nuclei,” ARAA, 38, 521.CrossRefGoogle Scholar
Sulentic, J. W., Marziani, P., & Zamfir, S. 2009, “Comparing Hβ line profiles in the 4D Eigenvector 1 context,” NAR, 53, 198.CrossRefGoogle Scholar
Tadhunter, C. 2008, “An introduction to active galactic nuclei: Classification and unification,” NAR, 52, 227.CrossRefGoogle Scholar
Tavecchio, F., Maraschi, L., Wolter, A., et al. 2007, “Chandra and Hubble Space Telescope observations of gamma-ray blazars: Comparing jet emission at small and large scales,” ApJ, 662, 900.CrossRefGoogle Scholar
Tombesi, F., Cappi, M., Reeves, J. N., et al. 2010, “Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines,” A&A, 521, A57.Google Scholar
Tommasin, S., Spinoglio, L., Malkan, M. A., et al. 2010, “Spitzer–IRS high-resolution spectroscopy of the 12 μm Seyfert galaxies. II. Results for the complete data set,” ApJ, 709, 1257.CrossRefGoogle Scholar
Tommasin, S., Netzer, H., Sternberg, A., et al. 2012, “Star formation in LINER host galaxies at z ~ 0.3,” arXiv:1201.3792.CrossRef
Trakhtenbrot, B., Netzer, H., Lira, P., et al. 2011, “Black hole mass and growth rate at z ~ 4.8: A short episode of fast growth followed by short duty cycle activity. ApJ, 730, 7.CrossRefGoogle Scholar
Trakhtenbrot, B., and H., Netzer 2012. Black Hole Growth to z = 2− I: Improved Virial Methods for Measuring M_BH and L/L Edd. ArXiv e-prints.Google Scholar
Tran, H. D. 2010, “Hidden double-peaked emitters in seyfert 2 galaxies,” ApJ, 711, 1174.CrossRefGoogle Scholar
Trichas, M., Georgakakis, A., Rowan-Robinson, M., et al. 2009, “Testing the starburst/AGN connection with SWIRE X-ray/70 μm sources,” MNRAS, 399, 663.CrossRefGoogle Scholar
Trump, J. R., Hall, P. B., Reichard, T. A., et al. 2006, “A catalog of broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release,” ApJS, 165, 1.CrossRefGoogle Scholar
Trump, J. R., Impey, C. D., Taniguchi, Y., et al. 2009, “The nature of optically dull active galactic nuclei in COSMOS,” ApJ, 706, 797.CrossRefGoogle Scholar
Tsalmantza, P., Decarli, R., Dotti, M., et al. 2011, “A systematic search for massive black hole binaries in the Sloan Digital Sky Survey spectroscopic sample,” ApJ, 738, 20.CrossRefGoogle Scholar
Turner, T. J., & Miller, L. 2009. X-ray absorption and reflection in active galactic nuclei. AstApRv, 17, 47–104.Google Scholar
Urry, C. M., Scarpa, R., O'Dowd, M., et al. 2002, “Host galaxies and the unification of radio-loud AGN,” NAR, 46, 349.CrossRefGoogle Scholar
Urry, M. 2011, “Gamma-ray and multiwavelength emission from blazars,” ApJ&A, 32, 139.Google Scholar
Vanden Berk, D. E., Richards, G. T., Bauer, A., et al. 2001, “Composite quasar spectra from the sloan digital sky survey,” AsJ, 122, 549.Google Scholar
Valiante, R., Schneider, R., Salvadori, S., et al. 2011, “The origin of the dust in high-redshift quasars: The case of SDSS J1148+5251,” MNRAS, 416, 1916.CrossRefGoogle Scholar
Vasudevan, R. V., & Fabian, A. C. 2007, “Piecing together the X-ray background: Bolometric corrections for active galactic nuclei,” MNRAS, 381, 1235.CrossRefGoogle Scholar
Veilleux, S., & Osterbrock, D. E. 1987, “Spectral classification of emission-line galaxies,” ApJS, 63, 2951G.CrossRefGoogle Scholar
Veilleux, S., Cecil, G., & Bland-Hawthorn, J. 2005, “Galactic winds,” AnnRevAstAp, 43, 769.Google Scholar
Veilleux, S. 2008, “AGN host galaxies,” NAR, 52, 289.CrossRefGoogle Scholar
Vestergaard, M., & Peterson, B. M. 2006, “Determining central black hole masses in distant active galaxies and quasars. II. Improved optical and UV scaling relationships,” ApJ, 641, 689.CrossRefGoogle Scholar
Vestergaard, M., & Osmer, P. S. 2009, “Mass functions of the active black holes in distant quasars from the Large Bright Quasar Survey, the Bright Quasar Survey, and the color-selected sample of the SDSS Fall Equatorial Stripe,” ApJ, 699, 800.CrossRefGoogle Scholar
Villforth, C., et al. 2010, “A new extensive catalog of variable active galactic nuceli in the GOODS fields and a new statistical approach to variability selection,” ApJ, 723, 737.CrossRefGoogle Scholar
Volonteri, M. 2010, “Formation of supermassive black holes,” AApRev, 18, 279.Google Scholar
Véron-Cetty, M. P., & Véron, P. 2000, “The emission line spectrum of active galactic nuclei and the unifying scheme,” 1GAApRev, 10, 81.Google Scholar
Wang, J.-M., & Netzer, H. 2003, “Extreme slim accretion disks and narrow line Seyfert 1 galaxies: The nature of the soft X-ray hump,” A&A, 398, 927.Google Scholar
Wild, V., Heckman, T., & Charlot, S. 2010, “Timing the starburst–AGN connection,” MNRAS, 405, 933.Google Scholar
Wills, B. J., Netzer, H., & Wills, D. 1985, “Broad emission features in QSOs and active galactic nuclei. II – New observations and theory of Fe II and H I emission,” ApJ, 288, 94.CrossRefGoogle Scholar
Winter, L. M., Mushotzky, R. F., Terashima, Y., et al. 2009, “The suzaku view of the swift/bat active galactic nuclei. II. Time variability and spectra of five ‘hidden’ active galactic nuclei,” ApJ, 701, 1644.CrossRefGoogle Scholar
Worrall, D. M. 2009, “The X-ray jets of active galaxies,” AApRev 17, 1.Google Scholar
Wuyts, S., Förster Schreiber, N. M., van der Wel, A., et al. 2011, “Galaxy structure and mode of star formation in the SFR-mass plane from z ~ 2.5 to z ~ 0.1,” ApJ, 742, 96.CrossRefGoogle Scholar
Xu, Y., Bian, W.-H., Yuan, Q.-R., et al. 2008, “The origin and evolution of CIV Baldwin effect in QSOs from the Sloan Digital Sky Survey,” MNRAS, 389, 1703.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Hagai Netzer, Tel-Aviv University
  • Book: The Physics and Evolution of Active Galactic Nuclei
  • Online publication: 05 June 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139109291.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Hagai Netzer, Tel-Aviv University
  • Book: The Physics and Evolution of Active Galactic Nuclei
  • Online publication: 05 June 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139109291.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Hagai Netzer, Tel-Aviv University
  • Book: The Physics and Evolution of Active Galactic Nuclei
  • Online publication: 05 June 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139109291.012
Available formats
×