Skip to main content Accessibility help
×
Hostname: page-component-cb9f654ff-fg9bn Total loading time: 0 Render date: 2025-08-08T20:11:27.656Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

References

Juan A. Valiente Kroon
Affiliation:
Queen Mary University of London
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, R., and Robbin, J. 1967. Transversal mapping and flows. W. A. Benjamin.
Aceña, A. 2009. Convergent null data expansions at spacelike infinity of stationary vacuum solutions. Ann. Henri Poincaré, 10, 275.Google Scholar
Aceña, A., and Valiente Kroon, J. A. 2011. Conformal extensions for stationary spacetimes. Class. Quantum Grav., 28, 225023.Google Scholar
Alcubierre, M. 2008. Introduction to 3+1 numerical relativity. Oxford University Press.
Ambrosetti, A., and Prodi, G. 1995. A primer of nonlinear analysis. Cambridge University Press.
Anderson, M. T. 2000. On stationary vacuum solutions to the Einstein equations. Ann. Henri Poincaré 1, 977.Google Scholar
Anderson, M. T. 2005a. Existence and stability of even dimensional asymptotically de Sitter spaces. Ann. Henri Poincaré, 6, 801.Google Scholar
Anderson, M. T. 2005b. Geometric aspects of the AdS/CFT correspondence. Page 1 of: Biquard, O. (ed), AdS/CFT correspondence: Einstein metrics and their conformal boundaries. Euro. Math. Soc. Zürich.
Anderson, M. T. 2006. On the uniqueness and global dynamics of AdS spacetimes. Class. Quantum Grav., 23, 6935.Google Scholar
Anderson, M. T., and Chruściel, P. T. 2005. Asymptotically simple solutions of the vacuum Einstein equations in even dimensions. Comm. Math. Phys., 260, 557.Google Scholar
Anderson, M. T., Chruściel, P. T., and Delay, E. 2002. Non-trivial static, geodesically complete vacuum spacetimes with a negative cosmological constant. JHEP, 10, 6.Google Scholar
Andersson, L. 2006. On the relation between mathematical and numerical relativity. Class. Quantum Grav., 23, S307.Google Scholar
Andersson, L., and Chruściel, P. T. 1993. Hyperboloidal Cauchy data for vacuum Einstein equations and obstructions to smoothness of null infinity. Phys. Rev. Lett., 70, 2829.Google Scholar
Andersson, L., and Chruściel, P. T. 1994. On “hyperboloidal” Cauchy data for vacuum Einstein equations and obstructions to smoothness of scri. Comm. Math. Phys., 161, 533.Google Scholar
Andersson, L., Chruściel, P. T., and Friedrich, H. 1992. On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein's field equations. Comm. Math. Phys., 149, 587.Google Scholar
Anguige, K., and Tod, K. P. 1999a. Isotropic cosmological singularities I. Polytropic perfect fluid spacetimes. Ann. Phys., 276, 257.Google Scholar
Anguige, K., and Tod, K. P. 1999b. Isotropic cosmological singularities II. The Einstein- Vlasov system. Ann. Phys., 276, 294.Google Scholar
Appel, W. 2007. Mathematics for physics and physicists. Princeton University Press.
Arnowitt, R., Deser, S., and Misner, C. W. 1962. The dynamics of general relativity. Page 227 of:Witten, L. (ed), Gravitation: an introduction to current research. John Wiley & Sons.
Arnowitt, R., Deser, S., and Misner, C. 2008. Reprint of: The dynamics of general relativity. Gen. Rel. Grav., 40, 1997.Google Scholar
Ashtekar, A. 1980. Asymptotic structure of the gravitational field at spatial infinity. Page 37 of: Held, A. (ed), General relativity and gravitation: one hundred years after the birth of Albert Einstein, vol. 2. Plenum Press.
Ashtekar, A. 1984. Asymptotic properties of isolated systems: recent developments. Page 37 of: Bertotti, B., Felice, de F., and Pascolini, A. (eds), General relativity and gravitation. D. Reidel Publishing Company.
Ashtekar, A. 1987. Asymptotic quantization. Bibliopolis.
Ashtekar, A. 1991. Lectures on non-perturbative canonical gravity. World Scientific.
Ashtekar, A. 2014. Geometry and physis of null infinity. Page 99 of: Bieri, L., and Yau, S.-T. (eds), One hundred years of general relativity. Surveys in Differential Geometry, vol. 20. International Press.
Ashtekar, A., and Das, S. 2000. Asymptotically anti-de Sitter spacetimes: conserved quantities. Class. Quantum Grav., 17, L17.Google Scholar
Ashtekar, A., and Dray, T. 1981. On the existence of solutions to Einstein's field equations with non-zero Bondi news. Comm. Math. Phys., 79, 581.Google Scholar
Ashtekar, A., and Hansen, R. O. 1978. A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity. J. Math. Phys., 19, 1542.Google Scholar
Ashtekar, A., and Magnon, A. 1984. Asymptotically anti-de Sitter space-times. Class. Quantum Grav., 1, L39.Google Scholar
Ashtekar, A., and Schmidt, B. G. 1980. Null infinity and Killing fields. J. Math. Phys., 21, 862.Google Scholar
Ashtekar, A., and Xanthopoulos, B. C. 1978. Isometries compatible with asymptotic flatness at null infinity: a complete description. J. Math. Phys., 19, 2216.Google Scholar
Ashtekar, A., Horowitz, G. T., and Magnon-Ashtekar, A. 1982. A generalization of tensor calculus and its applications to physics. Gen. Rel. Grav., 14, 411.Google Scholar
Aubin, T. 1976. équations différentielles non linéaires et le problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl., 55, 269.Google Scholar
Bäckdahl, T. 2007. Axisymmetric stationary solutions with arbitrary multipole moments. Class. Quantum Grav., 24, 2205.Google Scholar
Bäckdahl, T. 2009. Relating the Newman-Penrose constants to the Geroch-Hansen multipole moments. Class. Quantum Grav., 26, 231102.Google Scholar
Bäckdahl, T., and Herberthson, M. 2005a. Explicit multipole moments of stationary axisymmetric spacetimes. Class. Quantum Grav., 22, 3585.Google Scholar
Bäckdahl, T., and Herberthson, M. 2005b. Static axisymmetric space-times with prescribed multipole moments. Class. Quantum Grav., 22, 1607.Google Scholar
Bäckdahl, T., and Herberthson, M. 2006. Calculations of, and bounds for, the multipole moments of stationary spacetimes. Class. Quantum Grav., 23, 5997.Google Scholar
Bäckdahl, T., and Valiente Kroon, J. A. 2010a. Geometric invariant measuring the deviation from Kerr data. Phys. Rev. Lett., 104, 231102.Google Scholar
Bäckdahl, T., and Valiente Kroon, J. A. 2010b. On the construction of a geometric invariant measuring the deviation from Kerr data. Ann. Henri Poincaré, 11, 1225.Google Scholar
Bartnik, R. 1986. The mass of an asymptotically flat manifold. Comm. Pure Appl. Math., 661.Google Scholar
Bartnik, R., and Isenberg, J. 2004. The constraint equations. Page 1 of: Chruściel, P. T., and Friedrich, H. (eds), The Einstein equations and the large scale behaviour of gravitational fields. Birkhauser.
Baston, R. J., and Mason, L. J. 1987. Conformal gravity, the Einstein equation and spaces of complex null geodesics. Class. Quantum Grav., 4, 815.Google Scholar
Baumgarte, T. W., and Shapiro, S. L. 2010. Numerical relativity: solving Einstein's equations on the computer. Cambridge University Press.
Beig, R. 1984. Integration of Einstein's equations near spatial infinity. Proc. Roy. Soc. Lond. A, 391, 295.Google Scholar
Beig, R. 1985. A remarkable property of spherical harmonics. J. Math. Phys., 26, 769.Google Scholar
Beig, R. 1991. Conformal properties of static spacetimes. Class. Quantum Grav., 8, 263.Google Scholar
Beig, R., and Heinzle, J. M. 2005. CMC-slicings of Kottler-Schwarzschild-de Sitter Cosmologies. Comm. Math. Phys., 260, 673.Google Scholar
Beig, R., and Husa, S. 1994. Initial data for general relativity with toroidal conformal symmetry. Phys. Rev. D, 50, R7116.Google Scholar
Beig, R., and O'Murchadha, N. 1991. Trapped surfaces due to concentration of gravitational radiation. Phys. Rev. Lett., 66, 2421.Google Scholar
Beig, R., and O'Murchadha, N. 1994. Trapped surfaces in vacuum spacetimes. Class. Quantum Grav., 11, 419.Google Scholar
Beig, R., and O'Murchadha, N. 1996. The momentum constraints of general relativity and spatial conformal isometries. Comm. Math. Phys., 176, 723.Google Scholar
Beig, R., and O'Murchadha, N. 1998. Late time behaviour of the maximal slicing of the Schwarzschild black hole. Phys. Rev. D, 57, 4728.Google Scholar
Beig, R., and Schmidt, B. G. 1982. Einstein's equation near spatial infinity. Comm. Math. Phys., 87, 65.Google Scholar
Beig, R., and Schmidt, B. G. 2000. Time-independent gravitational fields. Page 325 of: Schmidt, B. G. (ed), Einstein's field equations and their physical implications. Springer.
Beig, R., and Simon, W. 1980a. Proof of a multipole conjecture due to Geroch. Comm. Math. Phys., 75, 79.Google Scholar
Beig, R., and Simon, W. 1980b. The stationary gravitational field near spatial infinity. Gen. Rel. Grav., 12, 1003.Google Scholar
Beig, R., and Simon, W. 1981. On the multipole expansions for stationary space-times. Proc. Roy. Soc. Lond. A, 376, 333.Google Scholar
Beig, R., and Szabados, L. B. 1997. On a global invariant of initial data sets. Class. Quantum Grav., 14, 3091.Google Scholar
Bekenstein, J. 1974. Exact solutions of Einstein-conformal scalar equations. Ann. Phys., 82, 535.Google Scholar
Bernal, A. N., and Sánchez, M. 2007. Globally hyperbolic spacetimes can be defined as ‘causal’ instead of strongly causal. Class. Quantum Grav., 24, 745.Google Scholar
Besse, A. L. 2008. Einstein manifolds. Springer Verlag.
Beyer, F. 2007. Asymptotics and singularities in cosmological models with positive cosmological constant. PhD thesis, University of Potsdam.
Beyer, F. 2008. Investigations of solutions of Einstein's field equations close to lambda- Taub-NUT. Class. Quantum Grav., 25, 235005.Google Scholar
Beyer, F. 2009a. Non-genericity of the Nariai solutions: I. Asymptotics and spatially homogeneous perturbations. Class. Quantum Grav., 26, 235015.Google Scholar
Beyer, F. 2009b. Non-genericity of the Nariai solutions: II. Investigations within the Gowdy class. Class. Quantum Grav., 26, 235016.Google Scholar
Beyer, F. 2009c. A spectral solver for evolution problems with spatial S3-topology. J. Comput. Phys., 228, 6496.Google Scholar
Beyer, F., Doulis, G., Frauendiener, J., and Whale, B. 2012. Numerical space-times near space-like and null infinity. The spin-2 system on Minkowski space. Class. Quantum Grav., 29, 245013.Google Scholar
Bičák, J. 2000. Selected solutions of Einstein's field equations: their role in general relativity and astrophysics. In: Schmidt, B. G. (ed), Einstein field equations and their physical implications (selected essays in honour of Juergen Ehlers). Springer Verlag.
Bičák, J., and Krtouš, P. 2001. Accelerated sources in de Sitter spacetime and the insufficiency of retarded fields. Phys. Rev. D, 64, 124020.Google Scholar
Bičák, J., and Krtouš, P. 2002. The fields of uniformly accelerated charges in de Sitter spacetime. Phys. Rev. Lett., 88, 211101.Google Scholar
Bičák, J., and Schmidt, B. G. 1989. Asymptotically flat radiative space-times with boost-rotation symmetry: the general structure. Phys. Rev. D, 40, 1827.Google Scholar
Bičák, J., Scholtz, M., and Tod, K. P. 2010. On asymptotically flat solutions of Einstein's equations periodic in time: II. Spacetimes with scalar-field sources. Class. Quantum Grav., 27, 175011.Google Scholar
Bizon, P. 2013. Is AdS stable? Gen. Rel. Grav., 46, 1724.Google Scholar
Bizon, P., and Friedrich, H. 2012. A remark about wave equations on the extreme Reissner-Nordström black hole exterior. Class. Quantum Grav., 30, 065001.Google Scholar
Bizon, P., and Rostworowski, A. 2011. Weakly turbulent instability of anti-de Sitter spacetime. Phys. Rev. Lett., 107, 031102.Google Scholar
Bondi, H., Burg, van der M. G. J., and Metzner, A. W. K. 1962. Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems. Proc. Roy. Soc. Lond. A, 269, 21.Google Scholar
Brännlund, J. 2004. Conformal isometry of the Reissner-Nordström-de Sitter Black Hole. Gen. Rel. Grav., 36, 883.Google Scholar
Branson, T., Eastwood, M., and Wang, M. 2004. Conformal geometry. In www.birs.ca/workshops/2004/04w5006/report04w5006.pdf.
Brill, D.R., and Hayward, S. A. 1994. Global structure of a black hole cosmos and its extremes. Class. Quantum Grav., 11, 359.Google Scholar
Buchdahl, H. A. 1959. Reciprocal static metrics and scalar fields in the general theory of relativity. Phys. Rev., 115, 1325.Google Scholar
Butscher, A. 2002. Exploring the conformal constraint equations. Page 195 of: Frauendiener, J., and Friedrich, H. (eds), The conformal structure of spacetime: geometry, analysis, numerics. Lect. Notes. Phys. Springer.
Butscher, A. 2007. Perturbative solutions of the extended constraint equations in general relativity. Comm. Math. Phys., 272, 1.Google Scholar
Cagnac, F. 1981. Problème de Cauchy sur un conoïde caractéristique pour des equations quasi-lineaires. Ann. Mat. Pure Appl., 129, 13.Google Scholar
Carmeli, M. 1977. Group theory and general relativity: representations of the Lorentz group and their applications to the gravitational field. McGraw-Hill.
Carter, B. 1966a. The complete analytic extension of the Reissner-Nordström metric in the special case e2 = m2. Phys. Rev. Lett., 21, 423.Google Scholar
Carter, B. 1966b. Complete analytic extension of the symmetry axis of Kerr's solution of Einstein's equations. Phys. Rev., 141, 1242.Google Scholar
Carter, B. 1968. Global structure of the Kerr family of gravitational fields. Phys. Rev., 174, 1559.Google Scholar
Carter, B. 1971. Causal structure in space-time. Gen. Rel. Grav., 1, 349.Google Scholar
Carter, B. 1973. Black hole equilibrium states. Page 61 of: DeWitt, C., and DeWitt, B.S. (eds), Black holes: les astres occlus. Gordon and Breach.
Chaljub-Simon, A. 1982. Decomposition of the space of covariant two-tensors on R3. Gen. Rel. Grav., 14, 743.Google Scholar
Chaljub-Simon, A., and Choquet-Bruhat, Y. 1980. Global solutions of the Licnerowicz equation in general relativity on an asymptotically Euclidean manifold. Gen. Rel. Grav., 12, 175.Google Scholar
Chang, S.-Y. A., Qing, J., and Yang, P. 2007. Some progress in conformal geometry. Sigma, 3, 122.Google Scholar
Choptuik, M. W. 1993. Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett., 70, 9.Google Scholar
Choquet-Bruhat, I., Isenberg, J., and York, J. W. Jr. 2000. Einstein constraints on asymptotically Euclidean manifolds. Phys. Rev. D, 61, 084034.Google Scholar
Choquet-Bruhat, Y. 2007. Results and open problems in mathematical general relativity. Milan J. Math., 75, 273.Google Scholar
Choquet-Bruhat, Y. 2008. General relativity and the Einstein equations. Oxford University Press.
Choquet-Bruhat, Y., and Christodoulou, D. 1981. Existence of global solutions of the Yang-Mills, Higgs and spinor field equations in 3+1 dimensions. Ann. Sci. l'E.N.S., 14, 481.Google Scholar
Choquet-Bruhat, Y., and Geroch, R. 1969. Global aspects of the Cauchy problem in general relativity. Comm. Math. Phys., 14, 329.Google Scholar
Choquet-Bruhat, Y., and York, J. W. Jr. 1980. The Cauchy problem. In: Held, A. (ed), General relativity and gravitation, Vol. I. Plenum Press.
Choquet-Bruhat, Y., Dewitt-Morette, C., and Dillard-Bleck, M. 1982. Analysis, manifolds and physics: part I. North Holland Publishing Company.
Choquet-Bruhat, Y., Chruściel, P. T., and Martín-García, J. M. 2011. The Cauchy problem on a characteristic cone for the Einstein equations in arbitrary dimensions. Ann. Henri Poincaré, 12, 419.Google Scholar
Christodoulou, D. 1986. The problem of a self-gravitating scalar field. Comm. Math. Phys., 105, 337.Google Scholar
Christodoulou, D., and Klainerman, S. 1993. The global nonlinear stability of the Minkowski space. Princeton University Press.
Christodoulou, D., and O'Murchadha, N. 1981. The boost problem in general relativity. Comm. Math. Phys., 80, 271.Google Scholar
Chruściel, P. T. 1991. On the uniqueness in the large of solutions of Einstein's equations (“Strong Cosmic Censorship”). Centre for Mathematics and Its Applications, Australian National University.
Chruściel, P. T., and Delay, E. 2002. Existence of non-trivial, vacuum, asymptotically simple spacetimes. Class. Quantum Grav., 19, L71.Google Scholar
Chruściel, P. T., and Delay, E. 2003. On mapping properties of the general relativistic constraint operator in weighted function spaces, with applications. Mem. Soc. Math. France, 94, 1.Google Scholar
Chruściel, P. T., and Delay, E. 2009. Gluing constructions for asymptotically hyperbolic manifolds with constant scalar curvature. Comm. Anal. Geom., 17, 343.Google Scholar
Chruściel, P. T., and Paetz, T.-T. 2012. The many ways of the characteristic Cauchy problem. Class. Quantum Grav., 29, 145006.Google Scholar
Chruściel, P. T., and Paetz, T.-T. 2013. Solutions of the vacuum Einstein equations with initial data on past null infinity. Class. Quantum Grav., 30, 235037.Google Scholar
Chruściel, P. T., MacCallum, M. A. H., and Singleton, D. B. 1995. Gravitational waves in general relativity XIV. Bondi expansions and the “polyhomogeneity” of I. Phil. Trans. Roy. Soc. Lond. A, 350, 113.Google Scholar
Chruściel, P. T., ölz, C. R., and Szybka, S. J. 2012a. Space-time diagrammatics. Phys. Rev. D, 86, 124041.Google Scholar
Chruściel, P. T., and Costa, J. L., and Heusler, M. 2012b. Stationary black holes: uniqueness and beyond. Living Rev. Relativity 15, 7. URL (cited on 24 May 2016): www.livingreviews.org/lrr-2012-7.Google Scholar
Cocke, W. J. 1989. Table for constructing spin coefficients in general relativity. Phys. Rev. D, 40, 650.Google Scholar
Cook, G. B. 2000. Initial data for numerical relativity. Living Rev. Relativity, 3, 5. URL (cited on 24 May 2016): www.livingreviews.org/lrr-2000-5.Google Scholar
Corvino, J. 2000. Scalar curvature deformations and a gluing construction for the Einstein constraint equations. Comm. Math. Phys., 214, 137.Google Scholar
Corvino, J. 2007. On the existence and stability of the Penrose compactification. Ann. Henri Poincaré, 8, 597.Google Scholar
Corvino, J., and Schoen, R. 2006. On the asymptotics for the Einstein constraint vacuum equations. J. Diff. Geom., 73, 185.Google Scholar
Cotton, é. 1899. Sur les variétés à trois dimensions. Ann. Fac. Sci. Toulouse 2e série, 1, 385.Google Scholar
Couch, W. E., and Torrence, R. J. 1984. Conformal invariance under spatial inversion of extreme Reissner-Nordström black holes. Gen. Rel. Grav., 16, 789.Google Scholar
Courant, R., and Hilbert, D. 1962. Methods of mathematical physics. Vol. II. John Wiley & Sons.
Courant, R., and John, F. 1989. Introduction to calculus and analysis II/1. Springer.
Cutler, C. 1989. Properties of spacetimes that are asymptotically flat at timelike infinity. Class. Quantum Grav., 6, 1075.Google Scholar
Cutler, C., and Wald, R. M. 1989. Existence of radiating Einstein-Maxwell solutions which are C ∞ on all of I+ and I -. Class. Quantum Grav., 6, 453.Google Scholar
Dafermos, M. 2003. Stability and instability of the Cauchy horizon for the spherically symmetric Einstein-Maxwell-scalar field equations. Ann. Math., 158, 875.Google Scholar
Dafermos, M. 2005. The interior of charged black holes and the problem of uniqueness in general relativity. Comm. Pure Appl. Math., 58, 0445.Google Scholar
Dafermos, M., and Rodnianski, I. 2005. A proof of Price's law for the collapse of a self-gravitating scalar field. Invent. Math., 162, 381.Google Scholar
Dafermos, M., and Rodnianski, I. 2010. Lectures on black holes and linear waves. Page 97 of: Ellwood, D., Rodnianski, I., Staffilani, G., and Wunsch, J. (eds), Evolution equations. Clay Mathematics Proceedings, Vol. 17. American Mathematical Society-Clay Mathematics Institute.
Dain, S. 2001a. Initial data for a head-on collision of two Kerr-like black holes with close limit. Phys. Rev. D, 64, 124002.Google Scholar
Dain, S. 2001b. Initial data for stationary spacetimes near spacelike infinity. Class. Quantum Grav., 18, 4329.Google Scholar
Dain, S. 2001c. Initial data for two Kerr-like black holes. Phys. Rev. Lett., 87, 121102.Google Scholar
Dain, S. 2006. Elliptic systems. Page 117 of: Frauendiener, J., Giulini, D., and Perlick, V. (eds), Analytical and numerical approaches to general relativity. Lect. Notes. Phys., vol. 692. Springer Verlag.
Dain, S., and Friedrich, H. 2001. Asymptotically flat initial data with prescribed regularity at infinity. Comm. Math. Phys., 222, 569.Google Scholar
Dain, S., and Gabach-Clement, M. E. 2011. Small deformations of extreme Kerr black hole initial data. Class. Quantum Grav., 28, 075003.Google Scholar
Damour, T., and Schmidt, B. 1990. Reliability of perturbation theory in general relativity. J. Math. Phys., 31, 2441.Google Scholar
Dossa, M. 1986. Solution globale d'un probléme de Cauchy caractéristique non linéare. Comptes Rendus de l'Academie des Sciences. Series I, 303, 795.Google Scholar
Dossa, M. 1997. Espaces de Sobolev non isotropes à poids et problémes de Cauchy quasi-linéaires sur un conoïde caractéristique. Ann. Inst. H. Poincaré Phys. Théor., 1, 37.Google Scholar
Dossa, M. 2002. Solutions C∞ d'une classe de problèmes de Cauchy quasi-linéaires hyperboliques du second ordre sur un conoïde caractéristique. Annales de la faculté des sciences de Toulouse Sér. 6, 11, 351.Google Scholar
Eastwood, M. 1996. Notes on conformal differential geometry. Page 57 of: Slovák, J. (ed), Proceedings of the 15th Winter School “Geometry and Physics”. Rendiconti del Circolo Matematico de Palermo, Serie II, vol. Supplemento No. 43. Circolo Matematico di Palermo.
Ehlers, J. 1973. Spherically symmetric spacetimes. Page 114 of: Israel, W. (ed), Relativity, astrophysics and cosmology. D. Reidel Publishing Company.
Ellis, G. F. R. 1984. Relativistic cosmology: its nature, aims and problems. In: Bertotti, B., Felice, de F., and Pascolini, A. (eds), General relativity and gravitation. D. Reidel Publishing Company.
Ellis, G. F. R. 2002. The state of cosmology 2001: two views and a middle way. In: Bishop, N. T., and Maharaj, S. D. (eds), General relativity and gravitation. World Scientific.
Ellis, G. F. R., and Elst, van H. 1998. Cosmological models: Cargese lectures 1998. NATO Adv. Study Inst. Ser. C. Math. Phys. Sci., 541, 1.Google Scholar
Ellis, G. F. R., Maartens, R., and MacCallum, M. A. H. 2012. Relativistic cosmology. Cambridge University Press.
Estabrook, F., Wahlquist, H., Christensen, S., DeWitt, B., Smarr, L., and Tsiang, E. 1973. Maximally slicing a black hole. Phys. Rev. D, 7, 2814.Google Scholar
Evans, L. C. 1998. Partial differential equations. American Mathematical Society.
Exton, A. R., Newman, E. T., and Penrose, R. 1969. Conserved quantites in the Einstein-Maxwell theory. J. Math. Phys., 10, 1566.Google Scholar
Fefferman, C., and Graham, C. R. 1985. Conformal invariants. Page 95 of: Élie Cartan et les mathématiques d'aujord'hui. The mathematical heritage of Élie Cartan, Sémin. Lyon 1984. Astérisque, No. Hors Sér.
Fefferman, C., and Graham, C. R. 2012. The ambient metric. Annals of Mathematical Studies, vol. 178. Princeton University Press.
Fischer, A. E., and Marsden, J. E. 1972. The Einstein evolution equations as a firstorder quasi-linear symmetric hyperbolic system. I. Comm. Math. Phys., 28, 1.Google Scholar
Fourès-Bruhat, Y. 1952. Théorème d'existence pour certains systèmes d'équations aux derivées partielles non linéaires. Acta Mathematica, 88, 141.Google Scholar
Frances, C. 2005. The conformal boundary of anti de Sitter spacetimes. Page 205 of: Biquard, O. (ed), AdS/CFT correspondence: Einstein metrics and their conformal boundaries. Euro. Math. Soc. Zürich.
Frankel, T. 2003. The geometry of physics. Cambridge University Press.
Frauendiener, J. 1998a. Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. I. The conformal field equations. Phys. Rev. D, 58, 064002.Google Scholar
Frauendiener, J. 1998b. Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. II. The evolution equations. Phys. Rev. D, 58, 064003.Google Scholar
Frauendiener, J. 2002. Some aspects of the numerical treatment of the conformal field equations. Page 261 of: Frauendiener, J., and Friedrich, H. (eds), The conformal structure of space-time: geometry, analysis, numerics. Springer.
Frauendiener, J. 2004. Conformal infinity. Living Rev. Relativity, 7, 1. URL (cited on 24 May 2016): www.livingreviews.org/lrr-2004-1.Google Scholar
Frauendiener, J., and Hein, M. 2002. Numerical evolution of axisymmetric, isolated systems in general relativity. Phys. Rev. D, 66, 124004.Google Scholar
Frauendiener, J., and Hennig, J. 2014. Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity. Class. Quantum Grav., 31, 085010.Google Scholar
Frauendiener, J., and Sparling, G. A. 2000. Local twistors and the conformal field equations. J. Math. Phys., 41, 437.Google Scholar
Frauendiener, J., and Szabados, L. B. 2001. The kernel of the edth operators on highergenus spacelike 2-surfaces. Class. Quantum Grav., 18, 1003.Google Scholar
Friedrich, H. 1981a. The asymptotic characteristic initial value problem for Einstein's vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system. Proc. Roy. Soc. Lond. A, 378, 401.Google Scholar
Friedrich, H. 1981b. On the regular and the asymptotic characteristic initial value problem for Einstein's vacuum field equations. Proc. Roy. Soc. Lond. A, 375, 169.Google Scholar
Friedrich, H. 1982. On the existence of analytic null asymptotically flat solutions of Einstein's vacuum field equations. Proc. Roy. Soc. Lond. A, 381, 361.Google Scholar
Friedrich, H. 1983. Cauchy problems for the conformal vacuum field equations in General Relativity. Comm. Math. Phys., 91, 445.Google Scholar
Friedrich, H. 1984. Some (con-)formal properties of Einstein's field equations and consequences. In: Flaherty, F. J. (ed), Asymptotic behaviour of mass and spacetime geometry. Lecture notes in physics 202. Springer Verlag.
Friedrich, H. 1985. On the hyperbolicity of Einstein's and other gauge field equations. Comm. Math. Phys., 100, 525.Google Scholar
Friedrich, H. 1986a. Existence and structure of past asymptotically simple solutions of Einstein's field equations with positive cosmological constant. J. Geom. Phys., 3, 101.Google Scholar
Friedrich, H. 1986b. On the existence of n-geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure. Comm. Math. Phys., 107, 587.Google Scholar
Friedrich, H. 1986c. On purely radiative space-times. Comm. Math. Phys., 103, 35.Google Scholar
Friedrich, H. 1988. On static and radiative space-times. Comm. Math. Phys., 119, 51.Google Scholar
Friedrich, H. 1991. On the global existence and the asymptotic behaviour of solutions to the Einstein-Maxwell-Yang-Mills equations. J. Diff. Geom., 34, 275.Google Scholar
Friedrich, H. 1992. Asymptotic structure of space-time. Page 147 of: Janis, A. I., and Porter, J. R. (eds), Recent advances in general relativity. Einstein Studies, vol. 4. Birkhauser.
Friedrich, H. 1995. Einstein equations and conformal structure: existence of anti-de Sitter-type space-times. J. Geom. Phys., 17, 125.Google Scholar
Friedrich, H. 1996. Hyperbolic reductions for Einstein's equations. Class. Quantum Grav., 13, 1451.Google Scholar
Friedrich, H. 1998a. Einstein's equation and geometric asymptotics. Page 153 of: Dadhich, N., and Narlinkar, J. (eds), Proceedings of the GR-15 conference. Inter-University Centre for Astronomy and Astrophysics.
Friedrich, H. 1998b. Evolution equations for gravitating ideal fluid bodies in general relativity. Phys. Rev. D, 57, 2317.Google Scholar
Friedrich, H. 1998c. Gravitational fields near space-like and null infinity. J. Geom. Phys., 24, 83.Google Scholar
Friedrich, H. 1999. Einstein's equation and conformal structure. Page 81 of: Huggett, S. A., Mason, L. J., Tod, K. P., Tsou, S. T., and Woodhouse, N. M. J. (eds), The geometric universe: science, geometry and the work of Roger Penrose. Oxford University Press.
Friedrich, H. 2002. Conformal Einstein evolution. Page 1 of: Frauendiener, J., and Friedrich, H. (eds), The conformal structure of spacetime: geometry, analysis, numerics. Lecture Notes in Physics. Springer.
Friedrich, H. 2003a. Conformal geodesics on vacuum spacetimes. Comm. Math. Phys., 235, 513.Google Scholar
Friedrich, H. 2003b. Spin-2 fields on Minkowski space near space-like and null infinity. Class. Quantum Grav., 20, 101.Google Scholar
Friedrich, H. 2004. Smoothness at null infinity and the structure of initial data. In: Chruściel, P. T., and Friedrich, H. (eds), 50 years of the Cauchy problem in general relativity. Birkhausser.
Friedrich, H. 2005. On the non-linearity of the subsidiary systems. Class. Quantum Grav., 22, L77.Google Scholar
Friedrich, H. 2007. Static vacuum solutions from convergent null data expansions at space-like infinity. Ann. Henri Poincaré, 8, 817.Google Scholar
Friedrich, H. 2008a. Conformal classes of asymptotically flat, static vacuum data. Class. Quantum Grav., 25, 065012.Google Scholar
Friedrich, H. 2008b. One-parameter families of conformally related asymptotically flat, static vacuum data. Class. Quantum Grav., 25, 135012.Google Scholar
Friedrich, H. 2009. Initial boundary value problems for Einstein's field equations and geometric uniqueness. Gen. Rel. Grav., 41, 1947.Google Scholar
Friedrich, H. 2011. Yamabe numbers and the Brill-Cantor criterion. Ann. Inst. H. Poincaré, 12, 1019.Google Scholar
Friedrich, H. 2013. Conformal structure of static vacuum data. Comm. Math. Phys., 321, 419.Google Scholar
Friedrich, H. 2014a. On the AdS stability problem. Class. Quantum Grav., 31, 105001.Google Scholar
Friedrich, H. 2014b. The Taylor expansion at past time-like infinity. Comm. Math. Phys., 324, 263.Google Scholar
Friedrich, H. 2015a. Geometric asymptotics and beyond. Page 37 of: Bieri, L., and Yau, S.-T. (eds), One hundred years of general relativity. Surveys in Differential Geometry, vol. 20. International Press.
Friedrich, H. 2015b. Smooth non-zero rest-mass evolution across time-like infinity. Ann. Henri Poincaré, 16, 2215.Google Scholar
Friedrich, H., and Kánnár, J. 2000a. Bondi-type systems near space-like infinity and the calculation of the NP-constants. J. Math. Phys., 41, 2195.Google Scholar
Friedrich, H., and Kánnár, J. 2000b. Calculating asymptotic quantities near space-like infinity and null infinity from Cauchy data. Annalen Phys., 9, 321.Google Scholar
Friedrich, H., and Nagy, G. 1999. The initial boundary value problem for Einstein's vacuum field equation. Comm. Math. Phys., 201, 619.Google Scholar
Friedrich, H., and Rendall, A. D. 2000. The Cauchy problem for the Einstein equations. Lect. Notes. Phys., 540, 127.Google Scholar
Friedrich, H., and Schmidt, B.G. 1987. Conformal geodesics in general relativity. Proc. Roy. Soc. Lond. A, 414, 171.Google Scholar
Friedrich, H., and Stewart, J. 1983. Characteristic initial data and wavefront singularities in general relativity. Proc. Roy. Soc. Lond. A, 385, 345.Google Scholar
Garabedian, P. R. 1986. Partial differential equations. AMS Chelsea Publishing.
García, A. A., Hehl, F. W., Heinicke, C., and Macias, A. 2004. The Cotton tensor in Riemannian spacetimes. Class. Quantum Grav., 21, 1099.Google Scholar
García-Parrado, A., Gasperín, E., and Valiente Kroon, J.A. 2014. Conformal geodesics in the Schwarzshild-de Sitter and Schwarzschild anti-de Sitter spacetimes. In preparation.
Gasperín, E., and Valiente Kroon, J. A. 2015. Spinorial wave equations and the stability of the Milne universe. Class. Quantum Grav., 32, 185021.Google Scholar
Geroch, R. 1968. Spinor structure of spacetimes in general relativity I. J. Math. Phys., 9, 1739.Google Scholar
Geroch, R. 1970a. Multipole moments. I. Flat space. J. Math. Phys., 11, 1955.Google Scholar
Geroch, R. 1970b. Multipole moments. II. Curved space. J. Math. Phys., 11, 2580.Google Scholar
Geroch, R. 1970c. Spinor structure of spacetimes in general relativity II. J. Math. Phys., 11, 343.Google Scholar
Geroch, R. 1971a. A method for generating new solutions of Einstein's equations. J. Math. Phys., 12, 918.Google Scholar
Geroch, R. 1971b. Space-time structure from a global view point. Page 71 of: Sachs, R. K. (ed), General relativity and cosmology. Proceedings of the International School in Physics “Enrico Fermi”, Course 48. Academic Press.
Geroch, R. 1972a. A method for generating new solutions of Einstein's equations. II. J. Math. Phys., 13, 394.Google Scholar
Geroch, R. 1972b. Structure of the gravitational field at spatial infinity. J. Math. Phys., 13, 956.Google Scholar
Geroch, R. 1976. Asymptotic structure of space-time. In: Esposito, E. P., and Witten, L. (eds), Asymptotic structure of spacetime. Plenum Press.
Geroch, R., Held, A., and Penrose, R. 1973. A space-time calculus based on pairs of null directions. J. Math. Phys., 14, 874.Google Scholar
Gourgoulhon, E. 2012. 3 + 1 Formalism in general relativity: bases of numerical relativity. Lect. Notes. Phys. 846. Springer Verlag.
Gowers, T. (ed). 2008. The Princeton companion to mathematics. Princeton University Press.
Graham, C. R., and Hirachi, K. 2005. The ambient obstruction tensor and Q-curvature. Page 59 of: AdS/CFT correspondence: Einstein metrics and their conformal boundaries. IRMA Lect. Math. Theor. Phys., vol. 8. Eur. Math. Soc. Zürich.
Griffiths, J. B., and Podolský, J. 2009. Exact space-times in Einstein's general relativity. Cambridge University Press.
Guès, O. 1990. Problème mixte hyperbolique quasi-linéaire caracteristique. Comm. Part. Diff. Eqns., 15, 595.Google Scholar
Gundlach, C., and Martín-García, J. M. 2007. Critical phenomena in gravitational collapse. Living Rev. Relativity, 10, 5. URL (cited on 24 May 2016): www.livingreviews.org/lrr-2007-5.Google Scholar
Günther, P. 1975. Spinorkalkül und Normalkoordinaten. Z. Angew. Math. Mech., 55, 205.Google Scholar
Guven, J., and O'Murchadha, N. 1995. Constraints in spherically symmetric classical general relativity. I. Optical scalars, foliations, bounds on the configuration space variables, and the positivity of the quasilocal mass. Phys. Rev. D, 52, 758.Google Scholar
Hamilton, R. 1982. The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc., 7, 65.Google Scholar
Hansen, R. O. 1974. Multipole moments of stationary spacetimes. J. Math. Phys., 15, 46.Google Scholar
Hartman, P. 1987. Ordinary differential equations. SIAM.
Hawking, S. W., and Ellis, G. F. R. 1973. The large scale structure of space-time. Cambridge University Press.
Henneaux, M., and Teitelboim, C. 1985. Asymptotically anti-de Sitter spaces. Comm. Math. Phys., 98, 391.Google Scholar
Hennig, J., and Ansorg, M. 2009. A fully pseudospectral scheme for solving singular hyperbolic equations. J. Hyp. Diff. Eqns., 6, 161.Google Scholar
Herberthson, H. 2009. Static spacetimes with prescribed multipole moments: a proof of a conjecture by Geroch. Class. Quantum Grav., 26, 215009.Google Scholar
Herberthson, M., and Ludwig, G. 1994. Time-like infinity and direction-dependent metrics. Class. Quantum Grav., 11, 187.Google Scholar
Holst, M., Nagy, G., and Tsogtgerel, G. 2008a. Far-from-constant mean curvature solutions of Einstein's contraint equations with positive Yamabe metrics. Phys. Rev. Lett., 100, 161101.Google Scholar
Holst, M., Nagy, G., and Tsogtgerel, G. 2008b. Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions. Comm. Math. Phys., 288, 547.Google Scholar
Hübner, P. 1995. General relativistic scalar-field models and asymptotic flatness. Class. Quantum Grav., 12, 791.Google Scholar
Hübner, P. 1999a. How to avoid artificial boundaries in the numerical calculation of black hole spacetimes. Class. Quantum Grav., 16, 2145.Google Scholar
Hübner, P. 1999b. A scheme to numerically evolve data for the conformal Einstein equation. Class. Quantum Grav., 16, 2823.Google Scholar
Hübner, P. 2001a. From now to timelike infinity on a finite grid. Class. Quantum Grav., 18, 1871.Google Scholar
Hübner, P. 2001b. Numerical calculation of conformally smooth hyperboloidal data. Class. Quantum Grav., 18, 1421.Google Scholar
Hughes, T. J. R., Kato, T., and Marsden, J. E. 1977. Well-posed quasi-linear secondorder hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Ration. Mech. Anal., 63, 273.Google Scholar
Husa, S. 2002. Problems and successes in the numerical approach to the conformal field equations. Page 239 of: Frauendiener, J., and Friedrich, H. (eds), The conformal structure of space-time: geometry, analysis, numerics. Springer.
Ionescu, A. D., and Klainerman, S. 2009a. On the uniqueness of smooth, stationary black holes in vacuum. Inventiones mathematicae, 175, 35.Google Scholar
Ionescu, A. D., and Klainerman, S. 2009b. Uniqueness results for ill-posed characteristic problems in curved spacetimes. Comm. Math. Phys., 285, 873.Google Scholar
Isenberg, J. 1995. Constant mean curvature solutions of the Einstein constraint equations on closed manifolds. Class. Quantum Grav., 12, 2249.Google Scholar
Isenberg, J. 2013. Initial value problem in general relativity. In: Ashtekar, A., and Petkov, V. (eds), The Springer handbook of spacetime. Springer Verlag.
Ishibashi, A., and Wald, R. M. 2004. Dynamics in non-globally-hyperbolic spacetimes III: anti de Sitter spacetime. Class. Quantum Grav., 21, 2981.Google Scholar
Jaramillo, J. L., Valiente, Kroon, J.A., and Gourgoulhon, E. 2008. From geometry to numerics: interdisciplinary aspects in mathematical and numerical relativity. Class. Quantum Grav., 25, 093001.Google Scholar
Kánnár, J. 1996a. Hyperboloidal initial data for the vacuum field equations with cosmological constant. Class. Quantum Grav., 13, 3075.Google Scholar
Kánnár, J. 1996b. On the existence of C ∞ solutions to the asymptotic characteristic initial value problem in general relativity. Proc. Roy. Soc. Lond. A, 452, 945.Google Scholar
Kato, T. 1975a. The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal., 58, 181.Google Scholar
Kato, T. 1975b. Quasi-linear equations of evolution, with applications to partial differential equations. Lect. Notes Math., 448, 25.Google Scholar
Kennefick, D. 2007. Traveling at the speed of thought: Einstein and the quest for gravitational waves. Princeton University Press.
Kennefick, D., and O'Murchadha, N. 1995. Weakly decaying asymptotically flat static and stationary solutions to the Einstein equations. Class. Quantum Grav., 12, 149.Google Scholar
Klainerman, S. 1984. The null condition and global existence to nonlinear wave equations. Lect. Appl. Math. 23, 293.Google Scholar
Klainerman, S. 2008. Partial differential equations. Page 455 of: Gowers, T., Barrow-Green, J., and Leader, I. (eds), The Princeton companion to mathematics. Princeton University Press.
Kobayashi, S. 1995. Transformation groups in differential geometry. Springer Verlag.
Kobayashi, S., and Nomizu, K. 2009. Foundations of differential geometry. Vol. 1. Wiley.
Kodaira, K. 1986. Complex manifolds and deformation of complex structures. Springer Verlag.
Kozameh, C., Newman, E. T., and Tod, K. P. 1985. Conformal Einstein spaces. Gen. Rel. Grav., 17, 343.Google Scholar
Krantz, S. G. 2006. Geometric function theory. Birkhäuser.
Kreiss, H.-O., and Lorenz, J. 1998. Stability for time-dependent differential equations. Acta Numerica, 7(203).Google Scholar
Kreiss, H.-O., Reula, O., Sarbach, O., and Winicour, J. 2009. Boundary conditions for coupled quasilinear wave equations with applications to isolated systems. Comm. Math. Phys., 289, 1099.Google Scholar
Kulkarni, R. S., and Pinkall, U. (eds). 1988. Conformal geometry. Aspects of Mathematics. Friedrich Vieweg & Sohn.
Kundu, P. 1981. On the analyticity of stationary gravitational fields at spacial infinity. J. Math. Phys., 22, 2006.Google Scholar
Künzle, H. P. 1967. Construction of singularity free spherically symmetric spacetime manifolds. Proc. Roy. Soc. Lond. A, 297, 244.Google Scholar
Lee, J. M. 1997. Riemannian manifolds: an introduction to curvature. Springer Verlag.
Lee, J. M. 2000. Introduction to topological manifolds. Springer Verlag.
Lee, J. M. 2002. Introduction to smooth manifolds. Springer Verlag.
Lee, J. M., and Parker, T. H. 1987. The Yamabe problem. Bull. Am. Math. Soc., 17, 37.Google Scholar
Lehner, L., and Pretorious, F. 2014. Numerical relativity and astrophysics. Ann. Rev. Astron. Astrophys., 52, 661.Google Scholar
Lübbe, C. 2014. Conformal scalar fields, isotropic singularities and conformal cyclic cosmologies. In arXIv:1312.2059.
Lübbe, C., and Valiente Kroon, J. A. 2009. On de Sitter-like and Minkowski-like spacetimes. Class. Quantum Grav., 26, 145012.Google Scholar
Lübbe, C., and Valiente Kroon, J. A. 2010. A stability result for purely radiative spacetimes. J. Hyp. Diff. Eqns., 7, 545.Google Scholar
Lübbe, C., and Valiente Kroon, J. A. 2012. The extended conformal Einstein field equations with matter: the Einstein-Maxwell system. J. Geom. Phys., 62, 1548.Google Scholar
Lübbe, C., and Valiente Kroon, J. A. 2013a. A class of conformal curves in the Reissner- Nordström spacetime. Ann. Henri Poincaré, 15, 1327.Google Scholar
Lübbe, C., and Valiente Kroon, J. A. 2013b. A conformal approach for the analysis of the non-linear stability of pure radiation cosmologies. Ann. Phys., 328, 1.Google Scholar
Lübbe, C., and Valiente Kroon, J. A. 2014. On the conformal structure of the extremal Reissner-Nordström spacetime. Class. Quantum Grav., 31, 175015.Google Scholar
Ludvigsen, M., and Vickers, J. A. G. 1981. The positivity of the Bondi mass. J. Phys. A, 14, L389.Google Scholar
Ludvigsen, M., and Vickers, J. A. G. 1982. A simple proof of the positivity of the Bondi mass. J. Phys. A, 15, L67.Google Scholar
Macedo, R. P., and Ansorg, M. 2014. Axisymmetric fully spectral code for hyperbolic equations. In arXiv:1402.7343.
Machado, M. P., and Vickers, J. A. G. 1995. A space-time calculus invariant under null rotations. Proc. Roy. Soc. Lond. A, 450, 1.Google Scholar
Machado, M. P., and Vickers, J. A. G. 1996. Invariant differential operators and the Karlhede classification of type N vacuum solutions. Class. Quantum Grav., 13, 1589.Google Scholar
Maldacena, J. 1998. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 2, 231.Google Scholar
Maliborski, M., and Rostworowski, A. 2013. Lecture notes on turbulent instability of anti-de Sitter spacetime. J. Mod. Phys. A, 28, 1340020.Google Scholar
Martín-García, J. M. 2014. www.xact.es.
Mason, L. J. 1986. The conformal Einstein equations. Twistor Newsletter, 22, 41.Google Scholar
Mason, L. J. 1995. The vacuum and Bach equations in terms of light cone cuts. J. Math. Phys., 36, 3704.Google Scholar
Miao, P. 2003. On the existence of static metric extensions in general relativity. Comm. Math. Phys., 241, 27.Google Scholar
Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1973. Gravitation. W. H. Freeman.
Morrey, C. B. 1958. On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations. Am. J. Math., 80, 198.Google Scholar
Morris, M. S., and Thorne, K. S. 1988. Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys., 56, 395.Google Scholar
Müller, zu Hagen H. 1970. On the analyticity of stationary vacuum solutions of Einstein's equation. Proc. Camb. Phil. Soc., 68, 199.Google Scholar
Müller, zu Hagen H., and Seifert, H.-J. 1977. On characteristic initial-value and mixed problems. Gen. Rel. Grav., 8, 259.Google Scholar
Newman, E. T., and Penrose, R. 1962. An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys., 3, 566.Google Scholar
Newman, E. T., and Penrose, R. 1963. Errata: an approach to gravitational radiation by a method of spin coefficients. J. Math. Phys., 4, 998.Google Scholar
Newman, E. T., and Penrose, R. 1965. 10 exact gravitationally-conserved quantities. Phys. Rev. Lett., 15, 231.Google Scholar
Newman, E. T., and Penrose, R. 1966. Note on the Bondi-Metzner-Sachs group. J. Math. Phys., 7, 863.Google Scholar
Newman, E. T., and Penrose, R. 1968. New conservation laws for zero rest-mass fields in asymptotically flat space-time. Proc. Roy. Soc. Lond. A, 305, 175.Google Scholar
Newman, E. T., and Tod, K. P. 1980. Asymptotically flat space-times. In: Held, A. (ed), General relativity and gravitation: one hundred years after the birth of Albert Einstein. Plenum.
Newman, R. P. A. C. 1989. The global structure of simple space-times. Comm. Math. Phys., 123, 17.Google Scholar
Nicolas, J.-P. 2015. The conformal approach to asymptotic analysis. In arXiv:1508.02592.
O'Donnell, P. 2003. Introduction to 2-spinors in general relativity. World Scientific.
Ogiue,, K. 1967. Theory of conformal connections. Kodai Math. Sem. Rep., 19, 193.Google Scholar
O'Murchadha, N. 1988. The Yamabe problem and general relativity. Proc. Centre Math. Anal. (A.N.U.), 19(137).Google Scholar
O'Neill, B. 1983. Semi-Riemannian geometry with applications to relativity. Academic Press.
O'Neill, B. 1995. The geometry of Kerr black holes. A. K. Peters.
Paetz, T.-T. 2015. Conformally covariant systems of wave equations and their equivalence to Einstein's field equations. Ann. Henri Poincaré, 16, 2059.Google Scholar
Penrose, R. 1960. A spinor approach to general relativity. Ann. Phys. (New York), 10, 171.Google Scholar
Penrose, R. 1963. Asymptotic properties of fields and space-times. Phys. Rev. Lett., 10, 66.Google Scholar
Penrose, R. 1964. Conformal approach to infinity. In: DeWitt, B. S., and DeWitt, C. M. (eds), Relativity, groups and topology: the 1963 Les Houches lectures. Gordon and Breach.
Penrose, R. 1965. Zero rest-mass fields including gravitation: asymptotic behaviour. Proc. Roy. Soc. Lond. A, 284, 159.Google Scholar
Penrose, R. 1967. Structure of space-time. Page 121 of: DeWitt, C. M., and Wheeler, J. A. (eds), Battelle rencontres: 1967 lectures in mathematics and physics. W. A. Benjamin.
Penrose, R. 1969. Gravitational collapse: the role of general relativity. Rev. Nuovo Cimento, I, 257.Google Scholar
Penrose, R. 1979. Singularities and time asymmetry. Page 581 of: Hawking, S. W., and Israel, W. (eds), General relativity: an Einstein centenary survey. Cambridge University Press.
Penrose, R. 1980. Null hypersurface initial data for classical fields of arbitrary spin and for general relativity. Gen. Rel. Grav., 12, 225.Google Scholar
Penrose, R. 1983. Spinors and torsion in general relativity. Found. Phys., 13, 325.Google Scholar
Penrose, R. 2002. Gravitational collapse: the role of general relativity. Gen. Rel. Grav., 34, 1141.Google Scholar
Penrose, R. 2011. Reprint of: Conformal treatment of infinity. Gen. Rel. Grav., 43, 901.Google Scholar
Penrose, R., and Rindler, W. 1984. Spinors and space-time. Vol. 1: Two-spinor calculus and relativistic fields. Cambridge University Press.
Penrose, R., and Rindler, W. 1986. Spinors and space-time. Vol. 2: Spinor and twistor methods in space-time geometry. Cambridge University Press.
Persides, S. 1979. A definition of asymptotically Minkowskian space-times. J. Math. Phys., 20, 1731.Google Scholar
Persides, S. 1980. Structure of the gravitational field at spatial infinity. II. Asymptotically Minkowski spaces. J. Math. Phys., 21, 142.Google Scholar
Persides, S. 1982a. Timelike infinity. J. Math. Phys., 23, 283.Google Scholar
Persides, S. 1982b. A unified formulation of timelike, null and spatial infinity. J. Math. Phys., 23, 289.Google Scholar
Petersen, P. 1991. Riemannian geometry. Graduate Texts in Mathematics, vol. 171. Springer.
Poisson, E., and Will, C. M. 2015. Gravity: Newtonian, post-Newtonian, relativistic. Cambridge University Press.
Porrill, J. 1982. The structure of timelike infinity for isolated systems. Proc. Roy. Soc. Lond. A, 381, 323.Google Scholar
Pretorious, F. 2009. Binary black hole coalescence. Page 305 of: Colpi, M., Casella, P., Gorini, V., Moschella, U., and Possenti, A. (eds), Physics of relativistic objects in compact binaries: from birth to coalescence. Springer.
Pugliese, D., and Valiente Kroon, J. A. 2012. On the evolution equations for ideal magnetohydrodynamics in curved spacetime. Gen. Rel. Grav., 44, 2785.Google Scholar
Pugliese, D., and Valiente Kroon, J. A. 2013. On the evolution equations for a selfgravitating charged scalar field. Gen. Rel. Grav., 45, 1247.Google Scholar
Quevedo, H. 1990. Multipole moments in general relativity: static and stationary vacuum solutions. Fortsch. der Physik, 38, 733002E Google Scholar
Reinhart, B. L. 1973. Maximal foliations of extended Schwarzschild space. J. Math. Phys., 14, 719.Google Scholar
Reiris, M. 2014a. Stationary solutions and asymptotic flatness I. Class. Quantum Grav., 31, 155012.Google Scholar
Reiris, M. 2014b. Stationary solutions and asymptotic flatness II. Class. Quantum Grav., 31, 155013.Google Scholar
Rendall, A. D. 1990. Reduction of the characteristic initial value problem to the Cauchy problem and its application to the Einstein equations. Proc. Roy. Soc. Lond. A, 427, 221.Google Scholar
Rendall, A. D. 2005. Theorems on existence and global dynamics for the Einstein equations. Living Rev. Relativity, 8, 6. URL (cited on 24 May 2016): www.livingreviews.org/lrr-2005-6.Google Scholar
Rendall, A. D. 2008. Partial differential equations in general relativity. Oxford University Press.
Reula, O. 1989. On existence and behaviour of asymptotically flat solutions to the stationary Einstein equations. Comm. Math. Phys., 122, 615.Google Scholar
Reula, O. 1998. Hyperbolic methods for Einstein's equations. Living Rev. Rel., 3, 1.Google Scholar
Ringström, H. 2009. The Cauchy problem in general relativity. Eur. Math. Soc. Zürich.
Rinne, O. 2010. An axisymmetric evolution code for the Einstein equations on hyperboloidal slices. Class. Quantum Grav., 27, 035014.Google Scholar
Rinne, O. 2014. Formation and decay of Einstein-Yang-Mills black holes. Phys. Rev. D, 90, 124084.Google Scholar
Rinne, O., and Moncrief, V. 2013. Hyperboloidal Einstein-matter evolution and tails for scalar and Yang–Mills fields. Class. Quantum Grav., 30, 095009.Google Scholar
Rodnianski, I., and Speck, J. 2013. The nonlinear future-stability of the FLRW family of solutions to the Euler-Einstein system with a positive cosmological constant. J. Eur. Math. Soc., 15, 2369.Google Scholar
Sachs, R. K. 1962a. Asymptotic symmetries in gravitational theory. Phys. Rev., 128, 2851.Google Scholar
Sachs, R. K. 1962b. Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time. Proc. Roy. Soc. Lond. A, 270, 103.Google Scholar
Sachs, R. K. 1962c. On the characteristic initial value problem in gravitational theory. J. Math. Phys., 3, 908.Google Scholar
Sbierski, J. 2013. On the existence of a maximal Cauchy development for the Einstein equations: a dezornification. Ann. Henri Poincaré: Online First.
Schmidt, B., Walker, M., and Sommers, P. 1975. A characterization of the Bondi- Metzner-Sachs group. Gen. Rel. Grav., 5, 489.Google Scholar
Schmidt, B. G. 1978. Asymptotic structure of isolated systems. Page 11 of: Ehlers, J. (ed), Isolated systems in general relativity, Proceedings of the International School of Physics “Enrico Fermi”, Course 67. North Holland Publishing Company.
Schmidt, B. G. 1981. The decay of the gravitational field. Comm. Math. Phys., 78, 447.Google Scholar
Schmidt, B. G. 1986. Conformal geodesics. Lect. Notes. Phys., 261, 135.Google Scholar
Schmidt, B. G. 1987. Gravitational radiation near spatial and null infinity. Proc. Roy. Soc. Lond. A, 410, 201.Google Scholar
Schmidt, B. G. 1996. Vacuum space-times with toroidal null infinities. Class. Quantum Grav., 13, 2811.Google Scholar
Schmidt, B. G., and Walker, M. 1983. Analytic conformal extensions of asymptotically flat spacetimes. J. Phys. A: Math. Gen., 16, 2187.Google Scholar
Schoen, R. 1984. Conformal deformation of a Riemannian metric to constant scalar curvature. J. Diff. Geom., 20, 479.Google Scholar
Schoen, R., and Yau, S. T. 1979. On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys., 65, 45.Google Scholar
Schouten, J. A. 1921. Ǖber die konforme Abbildung n-dimensionaler Mannigfaltigkeiten mit quadratischer Massbestimmung auf eine Mannigfaltigkeit mit euklidischer Massbestimmung. Math. Zeitschrift, 11, 58.Google Scholar
Schwarzschild, K. 1916. Ǖber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitz. Preuss. Akad. Wiss. Berlin, 7, 189–196.Google Scholar
Schwarzschild, K. 2003. “Golden oldie”: on the gravitational field of a mass point according to Einstein's theory. Gen. Rel. Grav., 35, 951.Google Scholar
Sen, A. 1981. On the existence of neutrino “zero-modes” in vacuum spacetimes. J. Math. Phys., 22, 1781.Google Scholar
Sexl, R. U., and Urbantke, H. K. 2000. Relativity, groups, particles: special relativity and relativistic symmetry in field and particle physics. Springer.
Shapiro, I. 1999. A century of relativity. Rev. Mod. Phys., 71, S41.Google Scholar
Shinbrot, M., and Welland, R. R. 1976. The Cauchy-Kowaleskaya. J. Math. An. App., 55, 757.Google Scholar
Simon, W. 1992. Radiative Einstein-Maxwell spacetimes and “no-hair” theorems. Class. Quantum Grav., 9, 241.Google Scholar
Sommers, P. 1980. Space spinors. J. Math. Phys., 21, 2567.Google Scholar
Speck, J. 2012. The nonlinear future-stability of the FLRW family of solutions to the Euler-Einstein system with a positive cosmological constant. Selecta Mathematica, 18, 633.Google Scholar
Spivak, M. 1970. A comprehensive introduction to differential geometry. Vol. I. Publish or Perish.
Stephani, H., Kramer, D., MacCallum, M. A. H., Hoenselaers, C., and Herlt, E. 2003. Exact solutions of Einstein's field equations, 2nd edition. Cambridge University Press.
Stewart, J. 1991. Advanced general relativity. Cambridge University Press.
Synge, J. L. 1960. Relativity: the general theory. North Holland Publishing Company.
Szabados, L. B. 1994. Two-dimensional Sen connections in general relativity. Class. Quantum Grav., 11, 1833.Google Scholar
Szabados, L. B. 2009. Quasi-local energy-momentum and angular momentum in General Relativity. Living Rev. Relativity, 12, 4. URL (cited on 24 May 2016): www.livingreviews.org/lrr-2009-4.Google Scholar
Szegö, G. 1978. Orthogonal polynomials. AMS Colloq. Pub., vol. 23. AMS.
Szekeres, P. 1965. The gravitational compass. J. Math. Phys., 6, 1387.Google Scholar
Tataru, D. 2004. The wave maps equation. Bull. Am. Math. Soc., 41, 185.Google Scholar
Taubes, C. H. 2011. Differential geometry. Oxford University Press.
Taylor, M. E. 1996a. Partial differential equations I: basic theory. Springer Verlag.
Taylor, M. E. 1996b. Partial differential equations II: qualitative studies of linear equations. Springer Verlag.
Taylor, M. E. 1996c. Partial differential equations III: nonlinear equations. Springer Verlag.
Tod, K. P. 1984. Three-surface twistors and conformal embedding. Gen. Rel. Grav., 16, 435.Google Scholar
Tod, K. P. 2002. Isotropic cosmological singularities. Page 123 of: Frauendiener, J., and Friedrich, H. (eds), The conformal structure of space-time: geometry, analysis, numerics. Lect. Notes. Phys. 604 Springer.
Tod, K. P. 2003. Isotropic cosmological singularities: other matter models. Class. Quantum Grav., 20, 251.Google Scholar
Tod, K. P. 2012. Some examples of the behaviour of conformal geodesics. J. Geom. Phys., 62, 1778.Google Scholar
Torres, del Castillo, G. F. 2003. 3-D spinors, spin-weighted functions and their applications. Birkhäuser.
Trautman, A. 1958. Radiation and boundary conditions in the theory of gravitation. Bull. Academ. Pol. Sciences: Series des Sciences Math. Astron. Phys., 6, 407.Google Scholar
Trudinger, N. 1968. Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Sc. Norm. Sup. Pisa, 22, 265.Google Scholar
Valiente Kroon, J. A. 1998. Conserved quantities for polyhomogeneous spacetimes. Class. Quantum Grav., 15, 2479.Google Scholar
Valiente Kroon, J. A. 1999a. A comment on the outgoing radiation condition and the peeling theorem. Gen. Rel. Grav., 31, 1219.Google Scholar
Valiente Kroon, J. A. 1999b. Logarithmic Newman-Penrose constants for arbitrary polyhomogeneous spacetimes. Class. Quantum Grav., 16, 1653.Google Scholar
Valiente Kroon, J. A. 2002. Polyhomogeneous expansions close to null and spatial infinity. Page 135 of: Frauendiner, J., and Friedrich, H. (eds), The conformal structure of spacetimes: geometry, numerics, analysis. Lecture Notes in Physics. Springer.
Valiente Kroon, J. A. 2003. Early radiative properties of the developments of time symmetric conformally flat initial data. Class. Quantum Grav., 20, L53.Google Scholar
Valiente Kroon, J. A. 2004a. Does asymptotic simplicity allow for radiation near spatial infinity? Comm. Math. Phys., 251, 211.Google Scholar
Valiente Kroon, J. A. 2004b. A new class of obstructions to the smoothness of null infinity. Comm. Math. Phys., 244, 133.Google Scholar
Valiente Kroon, J. A. 2004c. Time asymmetric spacetimes near null and spatial infinity. I. Expansions of developments of conformally flat data. Class. Quantum Grav., 23, 5457.Google Scholar
Valiente Kroon, J. A. 2005. Time asymmetric spacetimes near null and spatial infinity. II. Expansions of developments of initial data sets with non-smooth conformal metrics. Class. Quantum Grav., 22, 1683.Google Scholar
Valiente Kroon, J. A. 2007a. Asymptotic properties of the development of conformally flat data near spatial infinity. Class. Quantum Grav., 24, 3037.Google Scholar
Valiente Kroon, J. A. 2007b. The Maxwell field on the Schwarzschild spacetime: behaviour near spatial infinity. Proc. Roy. Soc. Lond. A, 463, 2609.Google Scholar
Valiente Kroon, J. A. 2009. Estimates for the Maxwell field near the spatial and null infinity of the Schwarzschild spacetime. J. Hyp. Diff. Eqns., 6, 229.Google Scholar
Valiente Kroon, J. A. 2010. A rigidity property of asymptotically simple spacetimes arising from conformally flat data. Comm. Math. Phys., 298, 673.Google Scholar
Valiente Kroon, J. A. 2011. Asymptotic simplicity and static data. Ann. Henri Poincaré, 13, 363.Google Scholar
Valiente Kroon, J. A. 2012. Global evaluations of static black hole spacetimes. In preparation.
Wald, R. M. 1983. Asymptotic behaviour of homogeneous cosmological models in the presence of a positive cosmological constant. Phys. Rev. D, 28, 2118.Google Scholar
Wald, R. M. 1984. General relativity. University of Chicago Press.
Walker, M. 1970. Block diagrams and the extension of timelike two-surfaces. J. Math. Phys., 11, 2280.Google Scholar
Weyl, H. 1918. Reine Infinitesimalgeometrie. Math. Zeitschrift, 2, 404.Google Scholar
Weyl, H. 1968. Zur Infinitesimal Geometrie: Einordnung der projektiven und der konformen Auffassung. Page 195 of: Gesammelte Abhandlungen., vol. II. Springer Verlag.
Will, C. M. 2014. The confrontation between general relativity and experiment. Living. Rev. Relativity, 17.Google Scholar
Willmore, T. J. 1993. Riemannian geometry. Oxford University Press.
Winicour, J. 2012. Characteristic evolution and matching. Living. Rev. Relativity, 14.Google Scholar
Witten, E. 1998. Anti de Sitter space and holography. Adv. Theor. Math. Phys., 2, 253.Google Scholar
Witten, E., and Yau, S.-T. 1999. Connectedness of the boundary in the AdS/CFT correspondence. Adv. Theor. Math. Phys., 1635.Google Scholar
Wong, W. W.-Y. 2013. A comment on the construction of the maximal globally hyperbolic Cauchy development. J. Math. Phys., 54, 113511.Google Scholar
Yamabe, H. 1960. On a deformation of Riemannian structures on compact manifolds. Osaka J. Mathematics, 12, 6126.Google Scholar
York, J. W. Jr. 1971. Gravitational degrees of freedom and the initial-value problem. Phys. Rev. Lett., 26, 1656.Google Scholar
York, J. W. Jr. 1972. Role of conformal three-geometry in the dynamics of gravitation. Phys. Rev. Lett., 28, 1082.Google Scholar
York, J. W. Jr. 1973. Conformally covariant orthogonal decomposition of symmetric tensor on Riemannian manifolds and the initial value problem of general relativity. J. Math. Phys., 14, 456.Google Scholar
Zenginoglu, A. 2006. A conformal approach to numerical calculations of asymptotically flat spacetimes. PhD thesis, Max-Planck Institute for Gravitational Physics (AEI) and University of Potsdam.
Zenginoglu, A. 2007. Numerical calculations near spatial infinity. J. Phys. Conf. Ser., 66, 012027.Google Scholar
Zenginoglu, A. 2008. A hyperboloidal study of tail decay rates for scalar and Yang-Mills fields. Class. Quantum Grav., 25, 195025.Google Scholar
Zenginoglu, A. 2011a. A geometric framework for black hole perturbations. Phys. Rev. D, 83, 127502.Google Scholar
Zenginoglu, A. 2011b. Hyperboloidal layers for hyperbolic equations on unbounded domains. J. Comput. Phys., 230, 2286.Google Scholar
Zenginoglu, A., and Kidder, L. E. 2010. Hyperboloidal evolution of test fields in three spatial dimensions. Phys. Rev. D, 81, 124010.
Zhiren, J. 1988. A counterexample to the Yamabe problem for complete non-compact manifolds. Lect. Notes Math., 1306, 93.Google Scholar

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Juan A. Valiente Kroon, Queen Mary University of London
  • Book: Conformal Methods in General Relativity
  • Online publication: 05 July 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139523950.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Juan A. Valiente Kroon, Queen Mary University of London
  • Book: Conformal Methods in General Relativity
  • Online publication: 05 July 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139523950.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Juan A. Valiente Kroon, Queen Mary University of London
  • Book: Conformal Methods in General Relativity
  • Online publication: 05 July 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139523950.023
Available formats
×