Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-18T03:16:56.833Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 April 2017

Iain D. Boyd
Affiliation:
University of Michigan, Ann Arbor
Thomas E. Schwartzentruber
Affiliation:
University of Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, T. (1994). “Direct simulation Monte Carlo method for internaltranslational energy exchange in nonequilibrium flow.” Rarefied Gas Dynamics: Theory and Simulations. In Proceedings of the 18th International Symposium on Rarified Gas Dynamics, University of British Columbia, Vancouver, BC, Canada, 1994, pp. 103–113.
Alsmeyer, H. (1976). “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam.Journal of Fluid Mechanics 74(3), 497–513.CrossRefGoogle Scholar
Annis, B., and Malinauskas, A. (1971). “Temperature dependence of rotational collision numbers from thermal transpiration.The Journal of Chemical Physics 54(11), 4763–4768.CrossRefGoogle Scholar
Appleton, J., Steinberg, M., and Liquornik, D. (1968). “Shock-tube study of nitrogen dissociation using vacuum-ultraviolet light absorption.The Journal of Chemical Physics 48(2), 599–608.CrossRefGoogle Scholar
Baker, L. L., and Hadjiconstantinou, N. G. (2005). “Variance reduction for Monte Carlo solutions of the Boltzmann equation.Physics of Fluids 17, 051703.Google Scholar
Bender, J. D., Valentini, P., Nompelis, I., Paukku, Y., Varga, Z., Truhlar, D. G., Schwartzentruber, T., and Candler, G. V. (2015). “An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of N2 + N2 dissociation reactions.The Journal of Chemical Physics 143(5), 054304.CrossRefGoogle Scholar
Bergemann, F., and Boyd, I. D. (1994). “New discrete vibrational energy model for the direct simulation Monte Carlo Method.Progress in Astronautics and Aeronautics 158, 174–183.Google Scholar
Bertin, J. (1994). Hypersonic Aerothermodynamics. AIAA, Washington.
Bhathnagor, P., Gross, E. G., and Krook, M. (1954). “A model for collision processes in gases.” I. Small amplitude processes in charged and neutral onecomponent systems. Physical Review 94(3), 511–525.
Billing, G.D. and Wang, L. (1992). “Semiclassical calculations of transport coefficients and rotational relaxation of nitrogen at high temperatures.The Journal of Physical Chemistry 96(6), 2572–2575.CrossRefGoogle Scholar
Bird, G. (1963). “Approach to translational equilibrium in a rigid sphere gas.Physics of Fluids (1958–1988) 6(10), 1518–1519.Google Scholar
Bird, G. (1994). Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, New York.
Bird, G. (2013). The DSMC method. CreateSpace Independent Publishing Platform.
Borgnakke, C., and Larsen, P. S. (1975). “Statistical collision model for monte carlo simulation of polyatomic gas mixture.” Journal of Computational Physics 18(4), 405–420.CrossRefGoogle Scholar
Bose, D., and Candler, G. V. (1996). “Thermal rate constants of the N2 + O → NO + N reaction using ab initio 3A and 3A potential energy surfaces.The Journal of Chemical Physics 104(8), 2825–2833.CrossRefGoogle Scholar
Bourgat, J.-F., Desvillettes, L., Le Tallec, P., and Perthame, B. (1994). “Microreversible collisions for polyatomic gases and Boltzmann's theorem.European Journal of Mechanics B: Fluids 13(2), 237–254.Google Scholar
Boyd, I. D. (1990a). “Analysis of rotational nonequilibrium in standing shock waves of nitrogen.AIAA Journal 28(11), 1997–1999.Google Scholar
Boyd, I. D. (1990b). “Rotational–translational energy transfer in rarefied nonequilibrium flows.Physics of Fluids A: Fluid Dynamics (1989–1993) 2(3), 447–452.Google Scholar
Boyd, I. D. (2007). “Modeling backward chemical rate processes in the direct simulation Monte Carlo Method.Physics of Fluids (1994–present) 19(12), 126103.CrossRefGoogle Scholar
Boyd, I. D., Chen, G., and Candler, G.V. (1995). “Predicting failure of the continuum fluid equations in transitional hypersonic flows.”Physics of Fluids (1994– present) 7(1), 210–219.CrossRef
Boyd, I. D., and Gokcen, T. (1994). “Computation of axisymmetric and ionized hypersonic flows using particle and continuum methods.AIAA Journal 32(9), 1828–1835.Google Scholar
Burt, J. M., and Josyula, E. (2014). “Efficient direct simulation Monte Carlo modeling of very low Knudsen number gas flows.” In 52nd Aerospace Sciences Meeting.
Burt, J. M., Josyula, E., and Boyd, I. D. (2011). “Techniques for reducing collision separation in direct simulation Monte Carlo calculations.” In 42nd AOAA Thermophysics Conference, Honolulu.CrossRef
Burt, J. M., Josyula, E., and Boyd, I. D. (2012). “NovelCartesian implementation of the direct simulation Monte Carlo method.Journal of Thermophysics and Heat Transfer 262, 258–270.CrossRefGoogle Scholar
Carnevale, E., Carey, C., and Larson, G. (1967). “Ultrasonic determination of rotational collision numbers and vibrational relaxation times of polyatomic gases at high temperatures.” The Journal of Chemical Physics 47(8), 2829–2835.Google Scholar
Chapman, S., and Cowling, T. G. (1952). The Mathematical Theory of Nonuniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion of Gases. Cambridge University Press, Cambridge.
Choquet, I. (1994). “Thermal nonequilibrium modeling using the direct simulation monte carlo method: Application to rotational energy.Physics of Fluids (1994–present) 6(12), 4042–4053.Google Scholar
Deschenes, T. R., and Boyd, I. D. (2011). “Extension of a modular particlecontinuum method to vibrationally excited, hypersonic flows.AIAA Journal 49(9), 1951–1959.Google Scholar
Dietrich, S., and Boyd, I. D. (1996). “Scalar and parallel optimized implementation of the direct simulation Monte Carlo Method.Journal of Computational Physics 126(2), 328–342.Google Scholar
Donev, A., Bell, J. B., Garcia, A. L., and Alder, B. J. (2010). “A hybrid particlecontinuum method for hydrodynamics of complex fluids.Multiscale Modeling and Simulation 8(3), 871–911.Google Scholar
Donev, A., Garcia, A. L., and Alder, B. J. (2008). “Stochastic event-driven molecular dynamics.Journal of Computational Physics 227(4), 2644–2665.Google Scholar
Fan, J. (2002). “A generalized soft-sphere model for Monte Carlo Simulation.Physics of Fluids (1994–present) 14(12), 4399–4405.Google Scholar
Farbar, E., and Boyd, I. D. (2014). “Subsonic flow boundary conditions for the direct simulation Monte Carlo method.Computers and Fluids 102, 99–110.Google Scholar
Galitzine, C., and Boyd, I. D. (2015). “An adaptive procedure for the numerical parameters of a particle simulation.Journal of Computational Physics 281, 449–472.CrossRefGoogle Scholar
Ganzi, G., and Sandler, S. I. (1971). “Determination of thermal transport properties from thermal transpiration measurements.The Journal of Chemical Physics 55(1), 132–140.Google Scholar
Gao, D., Zhang, C., and Schwartzentruber, T. E. (2011). “Particle simulations of planetary probe flows employing automated mesh refinement.Journal of Spacecraft and Rockets 48(3), 397–405.Google Scholar
Garcia, A. L. (2000). Numerical Methods for Physics. Prentice Hall, Englewood Cliffs, NJ.
Garcia, A. (2007). “Estimating hydrodynamic quantities in the presence of microscopic fluctuations.Communications in AppliedMathematics and Computational Science 1(1), 53–78.Google Scholar
Garcia, A. L., and Alder, B. J. (1998). “Generation of the Chapman–Enskog distribution.Journal of Computational Physics 140(1), 66–70.CrossRefGoogle Scholar
Gimelshein, N., Gimelshein, S., and Levin, D. (2002). “Vibrational relaxation rates in the direct simulation MonteCarlo method.” Physics of Fluids 14, 4452–4455.CrossRefGoogle Scholar
Gmurczyk, A. S., Tarczynski, M., and Walenta, Z. A. (1979). “ShockWave Structure in the Binary Mixtures of Gases with Disparate MolecularMasses.” 11th International symposium on rarefied gas dynamics, edited by Campargue, R., Commissariat a l'Energie Atomique, Paris, Vol. 1, pp. 333–341.
Gombosi, T. (1994). Gaskinetic Theory. Cambridge University Press, New York.CrossRef
Grad, H. (1963). “Asymptotic theory of the Boltzmann equation.Physics of Fluids (1958–1988) 6(2), 147–181.CrossRefGoogle Scholar
Gross, E. P., and Jackson, E. A. (1959). “Kinetic models and the linearized boltzmann equation.Physics of Fluids (1958–1988) 2(4), 432–441.CrossRefGoogle Scholar
Haas, B. L. and Boyd, I. D. (1993). “Models for direct Monte Carlo simulation of coupled vibration–dissociation.Physics of Fluids A: Fluid Dynamics (1989– 1993) 5(2), 478–489.Google Scholar
Haas, B. L., Hash, D. B., Bird, G. A., Lumpkin III, F. E., and Hassan, H. (1994). “Rates of thermal relaxation in direct simulation Monte Carlo methods.Physics of Fluids (1994–present) 6(6), 2191–2201.CrossRefGoogle Scholar
Hanson, R., and Baganoff, D. (1972). “Shock tube study of nitrogen dissociation rates using pressure measurements.” AIAA Journal 10, 211–215.
Hassan, H., and Hash, D. B. (1993). “Ageneralized hard-sphere model for monte carlo simulation.” Physics of Fluids A: Fluid Dynamics (1989–1993) 5(3), 738– 744.CrossRefGoogle Scholar
Healy, R., and Storvick, T. (1969). “Rotational collision number and eucken factors from thermal transpiration measurements.The Journal of Chemical Physics 50(3), 1419–1427.CrossRefGoogle Scholar
Hirschfelder, J. O., Curtiss, C. F., Bird, R. B., and Mayer, M.G. (1954), Molecular Theory of Gases and Liquids. Wiley New York.
Homolle, T.M.M., and Hadjiconstantinou, N. G. (2007). “A low-variance deviational simulation Monte Carlo for the Boltzmann equation.Journal of Computational Physics 226, 2341–2358.Google Scholar
Hornung, H. (1972). “Induction time for nitrogen dissociation”, The Journal of Chemical Physics 56(6), 3172–3173.CrossRefGoogle Scholar
Kannenberg, K. C., and Boyd, I. D. (2000). “Strategies for efficient particle resolution in the direct simulation Monte Carlo method.Journal of Computational Physics 157(2), 727–745.Google Scholar
Kennard, E. (1938). Kinetic Theory of Gases. McGraw-Hill, New York.
Kewley, D. and Hornung, H. (1974). “Free-piston shock-tube study of nitrogen dissociation.Chemical Physics Letters 25(4), 531–536.CrossRefGoogle Scholar
Kim, J. G. and Boyd, I. D. (2013). “State-resolved master equation analysis of thermochemical nonequilibrium of nitrogen.Chemical Physics 415, 237–246.CrossRefGoogle Scholar
Kistemaker, P., Tom, A. and De Vries, A. (1970). “Rotational relaxation numbers for the isotopic molecules of N2 and CO.Physica 48(3), 414–424.Google Scholar
Koshi, M., B. S., S.M. and Asaba, T. (1978). “Dissociation of nitric oxide in shock waves.” In Proceedings of the 17th Symposium (International) on Combustion Leeds, UK, 1, 553–562.Google Scholar
Koura, K. (1997). “Monte Carlo direct simulation of rotational relaxation of diatomic molecules using classical trajectory calculations: Nitrogen shock wave.Physics of Fluids (1994–present) 9(11), 3543–3549.CrossRefGoogle Scholar
Koura, K. (1998). “Monte carlo direct simulation of rotational relaxation of nitrogen through high total temperature shock waves using classical trajectory calculations.Physics of Fluids (1994–present) 10(10), 2689–2691.CrossRefGoogle Scholar
Koura, K., and Matsumoto, H. (1991). “Variable soft sphere molecular model for inverse-power-law or Lennard-Jones potential.Physics of Fluids A: Fluid Dynamics (1989–1993) 3(10), 2459–2465.Google Scholar
Koura, K., and Matsumoto, H. (1992). “Variable soft sphere molecular model for air species.Physics of Fluids A: Fluid Dynamics (1989–1993) 4(5), 1083– 1085.Google Scholar
Kunc, J., Hash, D., andHassan, H. (1995). “The ghs interaction model for strong attractive potentials.Physics of Fluids (1994–present) 7(5), 1173–1175.CrossRefGoogle Scholar
Landau, L., and Teller, E. (1936). “Theory of sound dispersion.Physikalische Zeitschrift der Sowjet-Union 10, 34.Google Scholar
Lin, W., Varga, Z., Song, G., Paukku, Y., and Truhlar, D. G. (2016). “Global triplet potential energy surfaces for the N2 reaction.” The Journal of Chemical Physics 144(2), 024309.CrossRefGoogle Scholar
Lordi, J. A., and Mates, R. E. (1970). “Rotational relaxation in nonpolar diatomic gases.Physics of Fluids (1958–1988) 13(2), 291–308.CrossRefGoogle Scholar
Lumpkin III, F. E., Haas, B. L., and Boyd, I. D. (1991). “Resolution of differences between collision number definitions in particle and continuum simulations.Physics of Fluids A: Fluid Dynamics (1989–1993) 3(9), 2282–2284.CrossRefGoogle Scholar
Magin, T. E., and Degrez, G. (2004a). “Transport algorithms for partially ionized and unmagnetized plasmas.Journal of Computational Physics 198(2), 424–449.Google Scholar
Magin, T. E., and Degrez, G. (2004b). “Transport properties of partially ionized and unmagnetized plasmas.Physical Review E 70(4), 046412.Google Scholar
Matsumoto, H., and Koura, K. (1991). “Comparison of velocity distribution functions in an argon shock wave between experiments and Monte Carlo calculations for Lennard-Jones Potential.Physics of Fluids A: Fluid Dynamics (1989–1993) 3(12), 3038–3045.CrossRefGoogle Scholar
Millikan, R., and White, D. (1963). “Systematics of vibrational relaxation.” Journal of Chemical Physics 39, 3209–3213.Google Scholar
Nompelis, I., and Schwartzentruber, T. (2013). “Strategies for parallelization of the dsmc method. In –51st AIAA Aerospace Sciences Meeting.” Vol. AIAA, Paper 2013–1204, Grapevine, TX.
Norman, P., Valentini, P., and Schwartzentruber, T. (2013). “Gpu-accelerated classical trajectory calculation direct simulation Monte Carlo applied to shock waves.Journal of Computational Physics 247, 153–167.Google Scholar
Nyeland, C., and Billing, G.D. (1988). “Transport coefficients of diatomic gases: Internal-state analysis for rotational and vibrational degrees of freedom.The Journal of Physical Chemistry 92(7), 1752–1755.CrossRefGoogle Scholar
Panesi, M., Jaffe, R. L., Schwenke, D. W., and Magin, T. E. (2013). “Rovibrational internal energy transfer and dissociation of N2 system in hypersonic flows.” The Journal of Chemical Physics 138(4), 044312.CrossRefGoogle Scholar
Park, C. (1990). Nonequilibrium Hypersonic Aerothermodynamics. Wiley, New York.
Park, C. (1993). “Reviewof chemical-kinetic problems of futureNASA missions. I. Earth entries.Journal of Thermophysics and Heat Transfer 7(3), 385–398.Google Scholar
Parker, J. (1959). “Rotational and vibrational relaxation in diatomic gases.Physics of Fluids 2, 449–462.Google Scholar
Paukku, Y., Yang, K. R., Varga, Z., and Truhlar, D. G. (2013). “Global ab initio ground-state potential energy surface of N4.The Journal of Chemical Physics 139(4), 044309.Google Scholar
Pfeiffer, M., Nizenkov, P., Mirza, A., and Fasoulas, S. (2016). “Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases.” Physics of Fluids (1994–present), 28(2), 027103.CrossRefGoogle Scholar
Poovathingal, S., Schwartzentruber, T. E., Murray, V., and Minton, T. K. (2015). Molecular simulations of surface ablation using reaction probabilities from molecular beam experiments and realistic microstructure. AIAA Paper 1449.
Poovathingal, S., Schwartzentruber, T. E., Murray, V. J., and Minton, T. K. (2016). “Molecular simulation of carbon ablation using beam experiments and resolved microstructure.AIAA Journal 54(1), 1–12.CrossRefGoogle Scholar
Present, R. (1958). Kinetic Theory of Gases. McGraw-Hill, New York.
Ramshaw, J. D., and Chang, C. (1996). “Friction-weighted self-consistent effective binary diffusion approximation.” Journal of Non-Equilibrium Thermodynamics 21(3), 223–232.CrossRefGoogle Scholar
Schwartzentruber, T. E., and Boyd, I. D. (2006). “A hybrid particlecontinuum method applied to shock waves.Journal of Computational Physics 215(2), 402–416.CrossRefGoogle Scholar
Schwartzentruber, T. E., Scalabrin, L. C., and Boyd, I. D. (2007). “A modular particle–continuum numerical method for hypersonic non-equilibrium gas flows.Journal of Computational Physics 225(1), 1159–1174.CrossRefGoogle Scholar
Schwartzentruber, T. E., Scalabrin, L. C., and Boyd, I. D. (2008a). “Hybrid particle-continuum simulations of hypersonic flow over a hollow-cylinderflare geometry.AIAA Journal 46(8), 2086–2095.Google Scholar
Schwartzentruber, T. E., Scalabrin, L. C., and Boyd, I. D. (2008b). “Hybrid particle-continuum simulations of nonequilibrium hypersonic blunt-body flowfields.Journal of Thermophysics and Heat Transfer 22(1), 29–37.Google Scholar
Schwartzentruber, T. E., Scalabrin, L. C., and Boyd, I. D. (2008c). “Multiscale particle-continuum simulations of hypersonic flow over a planetary probe.Journal of Spacecraft and Rockets 45(6), 1196–1206.Google Scholar
Stephani, K., Goldstein, D., and Varghese, P. (2013). “A non-equilibrium surface reservoir approach for hybrid dsmc/Navier–Stokes particle generation.Journal of Computational Physics 232(1), 468–481.CrossRefGoogle Scholar
Tysanner, M. W., and Garcia, A. L. (2004). “Measurement bias of fluid velocity in molecular simulations.Journal of Computational Physics 196(1), 173–183.CrossRefGoogle Scholar
Tysanner, M. W., and Garcia, A. L. (2005). “Non-equilibrium behaviour of equilibrium reservoirs in molecular simulations.International Journal for Numerical Methods in Fluids 48(12), 1337–1349.CrossRefGoogle Scholar
Valentini, P., and Schwartzentruber, T. E. (2009a). “A combined eventdriven/ time-driven molecular dynamics algorithm for the simulation of shock waves in rarefied gases.Journal of Computational Physics 228(23), 8766–8778.Google Scholar
Valentini, P., and Schwartzentruber, T. E. (2009b). “Large-scale molecular dynamics simulations of normal shock waves in dilute argon.Physics of Fluids (1994–present) 21(6), 066101.Google Scholar
Valentini, P., Schwartzentruber, T. E., Bender, J. D., and Candler, G. V. (2016). “Dynamics of nitrogen dissociation from direct molecular simulation”, Physical Review Fluids 1, 043402.Google Scholar
Valentini, P., Schwartzentruber, T. E., Bender, J. D., Nompelis, I., and Candler, G. V. (2015). “Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface'.Physics of Fluids (1994–present) 27(8), 086102.Google Scholar
Valentini, P., Tump, P. A., Zhang, C., and Schwartzentruber, T. E. (2013). “Molecular dynamics simulations of shock waves in mixtures of noble gases.Journal of Thermophysics and Heat Transfer 27(2), 226–234.Google Scholar
Valentini, P., Zhang, C., and Schwartzentruber, T. E. (2012). “Molecular dynamics simulation of rotational relaxation in nitrogen: Implications for rotational collision number models.Physics of Fluids (1994–present) 24(10), 106101.CrossRefGoogle Scholar
Varga, Z., Meana-Paneda, R., Song, G., Paukku, Y., and Truhlar, D. G. (2016). “Potential energy surface of triplet N2O2.The Journal of Chemical Physics 144(2), 024310.CrossRefGoogle Scholar
Venkattraman, A., and Alexeenko, A. A. (2012). “Binary scattering model for Lennard-Jones potential: Transport coefficients and collision integrals for non-equilibrium gas flow simulations.Physics of Fluids (1994–present) 24(2), 027101.CrossRefGoogle Scholar
Vincenti, W., and Kruger, C. (1967). Introduction to Physical Gas Dynamics. Wiley, New York.
Wadsworth, D. C., and Wysong, I. J. (1997). “Vibrational favoring effect in dsmc dissociation models.Physics of Fluids (1994–present) 9(12), 3873–3884.Google Scholar
Wagner, W. (1992). “A convergence proof for bird's direct simulation Monte Carlo method for the Boltzmann equation.” Journal of Statistical Physics 66(3–4), 1011–1044.CrossRefGoogle Scholar
Wang, W.-L., and Boyd, I. D. (2003). “Predicting continuum breakdown in hypersonic viscous flows.Physics of Fluids (1994–present) 15(1), 91–100.CrossRefGoogle Scholar
Wray, K. L. (1962). “Shock-tube study of the coupling of the O2–Ar rates of dissociation and vibrational relaxation.The Journal of Chemical Physics 37(6), 1254–1263.CrossRefGoogle Scholar
Wright, M. J., Bose, D., Palmer, G. E., and Levin, E. (2005). “Recommended collision integrals for transport property computations. Part 1: Air species.AIAA Journal 43(12), 2558–2564.Google Scholar
Wright, M. J., Hwang, H. H., and Schwenke, D. W. (2007). “Recommended collision integrals for transport property computations, Part ii: Mars and Venus entries.AIAA Journal 45(1), 281–288.CrossRefGoogle Scholar
Wysong, I. J., and Wadsworth, D. C. (1998). “Assessment of direct simulation Monte Carlo phenomenological rotational relaxation models.Physics of Fluids (1994–present) 10(11), 2983–2994.CrossRefGoogle Scholar
Zhang, C., and Schwartzentruber, T. E. (2012). “Robust cut-cell algorithms for dsmc implementations employing multi-level Cartesian grids.Computers and Fluids 69, 122–135.CrossRefGoogle Scholar
Zhang, C., and Schwartzentruber, T. E. (2013). “Inelastic collision selection procedures for direct simulation Monte Carlo calculations of gas mixtures.Physics of Fluids (1994–present) 25(10), 106105.Google Scholar
Zhang, C., Valentini, P., and Schwartzentruber, T. E. (2014). “Nonequilibriumdirection- dependent rotational energy model for use in continuum and stochastic molecular simulation.AIAA Journal 52(3), 604–617.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Iain D. Boyd, University of Michigan, Ann Arbor, Thomas E. Schwartzentruber, University of Minnesota
  • Book: Nonequilibrium Gas Dynamics and Molecular Simulation
  • Online publication: 13 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781139683494.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Iain D. Boyd, University of Michigan, Ann Arbor, Thomas E. Schwartzentruber, University of Minnesota
  • Book: Nonequilibrium Gas Dynamics and Molecular Simulation
  • Online publication: 13 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781139683494.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Iain D. Boyd, University of Michigan, Ann Arbor, Thomas E. Schwartzentruber, University of Minnesota
  • Book: Nonequilibrium Gas Dynamics and Molecular Simulation
  • Online publication: 13 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781139683494.014
Available formats
×