Published online by Cambridge University Press: 05 August 2015
Transistor technology scaling has deviated from the ideal constant-field scaling discussed by Dennard et al. in [1]. In particular, since the 90-nm technology node, the supply voltage has been going down slowly, if at all. This non-ideal scaling has made digital design more difficult for mobile SoCs. As a result, a number of mixed-signal techniques have been introduced to mitigate the reduced power benefits of scaling.
This chapter first gives an overview of the main digital design challenges for mobile SoCs in nanometer CMOS technologies. Then, it discusses several mixed-signal assist techniques to help with voltage scaling, voltage regulation, voltage droop management, inrush current management, thermal management, and silicon aging.
Digital design challenges for mobile SoCs
SoCs targeting mobile applications face a number of digital design challenges in nanometer CMOS technologies. These challenges are related to maximizing energy efficiency, controlling process variability, limiting power-supply noise, managing temperature, and silicon aging. They are certainly not unique to mobile SoCs, but are particularly important for such applications.
Energy efficiency
Mobile SoCs need to be low-power and energy-efficient. However, the power dissipation per device is no longer scaling well [2]. This puts more pressure on the development of new design techniques to reduce the dynamic and leakage power consumption of SoCs.
It is useful to remind ourselves that the dynamic power Pdyn for a net switching α times per clock cycle is given by:
Pdyn=α CV2f,
where C is the switched capacitance, V is the supply voltage, and f is the clock frequency. Some of the most common ways to reduce the dynamic power include using clock gating to lower the switching activity of sequential elements, wire length or gate sizing optimizations to reduce the switched capacitance, supply voltage scaling, and frequency scaling. Reducing the voltage has a quadratic effect on the dynamic power and is especially effective. This has led to the proliferation of the number of voltage and frequency domains for the various components (cores) used in an SoC. Scaling the voltage requires a regulator that can be programmed to produce multiple voltage levels. Buck regulators and low dropout regulators are typically used for this. Frequency scaling is usually done using a programmable clock generator such as a phase-locked loop (PLL) or frequency-locked loop (FLL), or a frequency divider.
Energy efficiency also requires the adoption of leakage control techniques.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.