Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T12:39:31.060Z Has data issue: false hasContentIssue false

2 - Global volcanic hazard and risk

Published online by Cambridge University Press:  05 August 2015

Sarah K. Brown
Affiliation:
University of Bristol, UK
Susan C. Loughlin
Affiliation:
British Geological Survey, UK
R.S.J. Sparks
Affiliation:
University of Bristol, UK
Charlotte Vye-Brown
Affiliation:
British Geological Survey, UK
J. Barclay
Affiliation:
University of East Anglia, UK
E. Calder
Affiliation:
University of Edinburgh, UK
E. Cottrell
Affiliation:
Smithsonian Institution, USA
G. Jolly
Affiliation:
GNS Science, New Zealand
J-C. Komorowski
Affiliation:
Institut de Physique du Globe de Paris, France
C. Mandeville
Affiliation:
US Geological Survey, USA
C.G. Newhall
Affiliation:
Earth Observatory of Singapore, Singapore
J.L. Palma
Affiliation:
University of Concepcion, Chile
S. Potter
Affiliation:
GNS Science, New Zealand
G. Valentine
Affiliation:
University at Buffalo, USA
Susan C. Loughlin
Affiliation:
British Geological Survey, Edinburgh
Steve Sparks
Affiliation:
University of Bristol
Sarah K. Brown
Affiliation:
University of Bristol
Susanna F. Jenkins
Affiliation:
University of Bristol
Charlotte Vye-Brown
Affiliation:
British Geological Survey, Edinburgh
HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the 'Save PDF' action button.

Summary

Introduction

An estimated 800 million people live within 100 km of an active volcano in 86 countries and additional overseas territories worldwide [see Chapter 4 and Appendix B]1. Volcanoes are compelling evidence that the Earth is a dynamic planet characterised by endless change and renewal. Humans have always found volcanic activity fascinating and have often chosen to live close to volcanoes, which commonly provide favourable environments for life. Volcanoes bring many benefits to society: eruptions fertilise soils; elevated topography provides good sites for infrastructure (e.g. telecommunications on elevated ground); water resources are commonly plentiful; volcano tourism can be lucrative; and volcanoes can acquire spiritual, aesthetic or religious significance. Some volcanoes are also associated with geothermal resources, making them a target for exploration and a potential energy resource.

Much of the time volcanoes are not a threat because they erupt very infrequently or because communities have become resilient to frequently erupting volcanoes. However, there is an everpresent danger of a long-dormant volcano re-awakening or of volcanoes producing anomalously large or unexpected eruptions. Volcanic eruptions can cause loss of life and livelihoods in exposed communities, damage or disrupt critical infrastructure and add stress to already fragile environments. Their impacts can be both short-term, e.g. physical damage, and long-term, e.g. sustained or permanent displacement of populations. The risk from volcanic eruptions and their attendant hazards is often underestimated beyond areas within the immediate proximity of a volcano. For example, volcanic ash hazards can have effects hundreds of kilometres away from the vent and have an adverse impact on human and animal health, infrastructure, transport, agriculture and horticulture, the environment and economies. The products of volcanism and their impacts can extend beyond country borders, to be regional and even global in scale.

Although known historical loss of life from volcanic eruptions (since 1600 AD about 280,000 fatalities are recorded, Auker et al. (2013)) is modest compared to other major natural hazards, volcanic eruptions can be catastrophic for exposed communities. In 1985 the town of Armero in Colombia was buried by lahars (volcanic mudflows) with more than 21,000 fatalities due to relatively small explosive eruptions at the summit of Nevado del Ruiz volcano that partially melted a glacier (Voight, 1990).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This content is Open Access and distributed under the terms of the Creative Commons Attribution licence CC-BY-NC-ND 3.0 https://creativecommons.org/cclicenses/

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×