Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T22:48:59.186Z Has data issue: false hasContentIssue false

Vertebral lesions in Notiomastodon platensis, Gomphotheriidae, from Anolaima, Colombia

Published online by Cambridge University Press:  25 October 2022

Catalina María Zorro-Luján*
Affiliation:
Museo Geológico Nacional José Royo y Gómez, Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Diagonal 53 no. 34–53 Bogotá, Colombia
Leslie F. Noè
Affiliation:
Departamento de Geociencias, Facultad de Ciencias, Universidad de los Andes, Cra 1 no. 18A-12, 111711 Bogotá, Colombia
Marcela Gómez-Pérez
Affiliation:
Museo Geológico Nacional José Royo y Gómez, Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Diagonal 53 no. 34–53 Bogotá, Colombia
Sandrine Grouard
Affiliation:
Unitée Mixte de Recherche (UMR) 7209, Archéozoologie–Archéobotanique Sociétés, Pratiques et Environnements (AASPE), Muséum National d'Histoire Naturelle (MNHN)–Centre National de la Recherche Scientifique (CNRS), 55 rue Buffon, CP 56, 75005 Paris, France
Andrés Chaparro
Affiliation:
Museo Geológico Nacional José Royo y Gómez, Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Diagonal 53 no. 34–53 Bogotá, Colombia
Saúl Torres
Affiliation:
Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de los Andes, Cra 1 no. 18A-12, 111711 Bogotá, Colombia
*
*Corresponding author at: Museo Geológico Nacional José Royo y Gómez, Dirección de Geociencias Básicas, Servicio Geológico Colombiano, Diagonal 53 no. 34–53 Bogotá, Colombia. E-mail address: czorro@sgc.gov.co (C.M. Zorro-Luján).

Abstract

Six vertebrae (one cervical, three articulated thoracic, and two lumbar) and an incomplete thoracic neural spine from a new late Pleistocene site at Anolaima, Cundinamarca, Colombia, are attributed to the extinct gomphothere (Elephantoidea, Proboscidea) Notiomastodon platensis. The preserved bones exhibit a range of alterations, including porosities, piercings, hollows, and deep bone lesions on the spinous process and the neural arch; asymmetrical zygapophyseal articulations; and osteoarthritic lesions. Diet, behaviour, ecological aspects, selective pressures, and disease have the potential to affect the bones, so the study of individual variations and palaeopathology provides important information for understanding aspects of the life of extinct organisms. Osteological anomalies in the Anolaima gomphothere are interpreted as the result of nutritional deficiencies in essential minerals caused by environmental stresses, possibly related to the palaeoenvironmental instability that characterized the late Pleistocene and that coincides with the age of the fossils. Excessive biomechanical loading on already weakened bones from locomotion through the uneven, upland terrain of the Anolaima region may have contributed to the pathologies. This palaeopathological analysis is the first for Colombian megafauna, and thereby broadens our knowledge of the health conditions of South American gomphotheres.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alberdi, M.T., Cerdeño, E., Prado, J.L., 2008. Stegomastodon platensis (Proboscidea, Gomphotheriidae) en el Pleistoceno de Santiago del Estero, Argentina. Ameghiniana 45, 257271.Google Scholar
Ameghino, F., 1888. Rápidas diagnosis de algunos mamíferos fósiles nuevos de la República Argentina. P.E.Coni, Buenos Aires, Argentina, pp. 117.Google Scholar
Andrade, L.C., Barbosa, F.H.S., Melki, L.B., Oliveira, E.V., de Araújo-Júnior, H.I., Maniesi, V., 2021. Revealing bone diseases in the Quaternary ground sloth Eremotherium laurillardi (Mammalia, Xenarthra). Historical Biology 33, 14221430.CrossRefGoogle Scholar
Arroyo-Cabrales, J., Polaco, O.J., Laurito, C., Johnson, E., Alberdi, M. T., Zamora, V.A.L., 2007. The proboscideans (Mammalia) from Mesoamerica. Quaternary International 169–170, 1723.CrossRefGoogle Scholar
Asevedo, L., 2015. Paleoecologia alimentar dos gonfotérios (Proboscidea: Mammalia) Pleistocênicos da América do Sul. Master's thesis, Pós-graduação em Biodiversidade Neotropical, Universidade Federal do Estado do Rio de Janeiro, Brazil.Google Scholar
Asevedo, L., Winck, G.R., Mothé, D., Avilla, L.S., 2012. Ancient diet of the Pleistocene gomphothere Notiomastodon platensis (Mammalia, Proboscidea, Gomphotheriidae) from lowland mid-latitudes of South America: stereomicrowear and tooth calculus analyses combined. Quaternary International 255, 4252.CrossRefGoogle Scholar
Barbosa, F.H.S., Araújo-Júnior, H.I., Mothé, D., Avilla, LS., 2017. Osteological diseases in an extinct Notiomastodon (Mammalia, Proboscidea) population from the Late Pleistocene of Brazil. Quaternary International 443, 228232.CrossRefGoogle Scholar
Barbosa, F.H.S., Porpino, K.O., Lima Fragoso, A.B., Cavalcante Ferreira dos Santos, M.F., 2013. Osteomyelitis in Quaternary mammal from the Rio Grande do Norte State, Brazil. Quaternary International 299, 9093CrossRefGoogle Scholar
Barnosky, A.D., Koch, P.L., Feranec, R.S., Wing, S.L., Shabel, A.B., 2004. Assessing the causes of Late Pleistocene extinctions on the continents. Science 306, 7075.CrossRefGoogle ScholarPubMed
Barnosky, A.D., Lindsey, E.L., 2010. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quaternary International 217, 1029.CrossRefGoogle Scholar
Bezuidenhout, A.J., Seegers, C.D., 1996. The osteology of the African elephant (Loxodonta africana): vertebral column, ribs and sternum. Onderstepoort Journal of Veterinary Research 63, 131147.Google ScholarPubMed
Böhmer, C., Amson, E., Arnold, P., Van Heteren, A.H., Nyakatura, J.A., 2018. Homeotic transformations reflect departure from the mammalian “rule of seven” cervical vertebrae in sloths: inferences on the Hox code and morphological modularity of the mammalian neck. BMC Evolutionary Biology 18, 111.CrossRefGoogle ScholarPubMed
Broughton, J. M., Weitzel, E. M., 2018. Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nature Communications 9, 112.CrossRefGoogle ScholarPubMed
Bush, M.B., Metcalfe, S.E., 2012. Latin America and the Caribbean. In: Metcalfe, S.E., Nash, D.J. (Eds.), Quaternary Environments Change in the Tropics. Wiley, Chichester, UK, pp. 263311.CrossRefGoogle Scholar
Cabanne, G., Calderon, L., Trujillo Arias, N., Flores, P., Pessoa, R., D'Horta, F.M., Miyaki, C., 2016. Effects of Pleistocene climate changes on species ranges and evolutionary processes in the Neotropical Atlantic Forest. Biological Journal of the Linnean Society 119, 856872.CrossRefGoogle Scholar
Cabrera, A., 1929. Una revisión de los mastodontes argentinos. Revista del Museo de La Plata 32, 61144.Google Scholar
Cardoso, H., Ríos, L., 2011. Age estimation from stages of epiphyseal union in the presacral vertebrae. American Journal of Physical Anthropology 144, 238247.CrossRefGoogle ScholarPubMed
Cione, A.L., Tonni, E.P., Soibelzon, L., 2009. Did humans cause the Late Pleistocene–Early Holocene mammalian extinctions in South America in a context of shrinking open areas? In: Haynes, G. (Ed.), American Megafaunal Extinctions at the End of the Pleistocene. Springer, Dordrecht, Netherlands, pp. 125144.CrossRefGoogle Scholar
Clark, E.A., Goodship, A.E., 2010. A severely disabled mammoth—the palaeopathological evidence. Quaternary International 228, 210216.CrossRefGoogle Scholar
Cohen, K.M., Finney, S.C., Gibbard, P.L., Fan, J.X., 2013 [updated October 2021]. The ICS International Chronostratigraphic Chart. Episodes 36, 199204.CrossRefGoogle Scholar
Dantas, M.A.T., Dutra, R.P., Cherkinsky, A., Fortier, D.C., Kamino, L.H.Y., Cozzuol, M.A., Ribeiro, A.S., Silva, F.V., 2013. Paleoecology and radiocarbon dating of the Pleistocene megafauna of the Brazilian intertropical region. Quaternary Research 79, 6165.CrossRefGoogle Scholar
Davis, G.K., 1968. Mineral elements in the nutrition of larger mammals. American Zoologist 8, 169174CrossRefGoogle ScholarPubMed
De Porta, J., 1961. Algunos problemas estratigráfico-faunísticos de los vertebrados en Colombia. Boletín de Geología, Universidad Industrial de Santander 7, 83104.Google Scholar
[EAZA] European Association of Zoos and Aquaria, 2020. EAZA Best Practice Guidelines for Elephants. 2nd ed. EAZA, Amsterdam.Google Scholar
Evans, G.H., 1910. Elephants and Their Diseases. A Treatise on Elephants. Superintendent Government Printing, Rangoon, Burma.Google Scholar
Ferretti, M.P., 2010. Anatomy of Haplomastodon chimborazi (Mammalia, Proboscidea) from the late Pleistocene of Ecuador and its bearing on the phylogeny and systematics of South American gomphotheres. Geodiversitas 32, 663721.CrossRefGoogle Scholar
Fischer, G., 1814. Zoognosia. Tabulis synopticis illustrata. Typis Nicolai Sergeidis Vsevolozsky, Moscow.Google Scholar
Flantua, S. Blaauw, M., y Hooghiemstra, H., 2016. Geochronological database and classification system for age uncertainties in Neotropical pollen records. Climate of the Past 12, 387414.CrossRefGoogle Scholar
Flantua, S., Hooghiemstra, H., Grimm, E., Behling, H., Blush, M., González-Arango, C., Gosling, W., Ledru, M.-P., Lozano-García, S., Maldonado, A., Prieto, A. Rull, V. y van Boxel, J., 2015. Updated site compilation of the Latin American Pollen Database. Review of Palaeobotany and Palynology 223, 104115.CrossRefGoogle Scholar
Fry, E., Kim, S.K., Chigurapti, S., Mika, K.M., Ratan, A., Dammermann, A., Mitchell, B.J., Miller, W., Lynch, V.J., 2020. Functional architecture of deleterious genetic variants in the genome of a Wrangel Island mammoth. Genome Biology and Evolution 12(3), 4858.CrossRefGoogle ScholarPubMed
Garg, K., Aggarwal, A., 2021. Facet tropism in lumbar spine and cervical spine: a systematic review and meta-analysis. World Neurosurgery 147, 4765.CrossRefGoogle ScholarPubMed
Gómez, M., 2006. Revisión del registro fósil y distribución de los mastodontes (Proboscidea: Gomphotheriidae) del Cuaternario en Colombia. Undergraduate thesis, Universidad de Antioquia, Colombia.Google Scholar
González-Guarda, E., Petermann-Pichincura, A., Tornero, C., Domingo, L., Agustí, J. Pino, M., Abarzúa, A.M., et al. , 2018. Multiproxy evidence for leafbrowsing and closed habitats in extinct proboscideans (Mammalia, Proboscidea) from central Chile. Proceedings of the National Academy of Sciences USA 115, 92589263.CrossRefGoogle ScholarPubMed
Gray, J.E., 1821. On the natural arrangement of vertebrose animals. London Medical Repository and Review 15, 296310.Google Scholar
Haseeb, A., Haqqi, T.M., 2013. Immunopathogenesis of osteoarthritis. Clinical Immunology 146, 185196.CrossRefGoogle ScholarPubMed
Hautier, L., Weisbecker, V., Sanchez-Villagra, M.R., Goswami, A., Asher, R.J., 2010. Skeletal development in sloths and the evolution of mammalian vertebral patterning. Proceedings of the National Academy of Sciences USA, 107:1890318908.CrossRefGoogle ScholarPubMed
Hay, O.P., 1922. Further observations on some extinct elephants. Proceedings of the Biological Society of Washington 35, 97102.Google Scholar
Haynes, G., 1991. Mammoths, Mastodonts, and Elephants: Biology, Behavior, and the Fossil Record. Cambridge University Press, Cambridge.Google Scholar
Haynes, G., 2001. Elephant landscapes; human foragers in a world of mammoths, mastodonts, and elephants. In: Cavarretta, G., Giola, P., Mussi, M., Palombo, M.R. (Eds.), The World of Elephants: Proceedings of the 1st International Congress. Consiglio Nazionale delle Ricerche-Roma, Rome, pp. 571576.Google Scholar
Haynes, G., 2017. Finding meaning in mammoth age profiles. Quaternary International 443, 6578.CrossRefGoogle Scholar
Haynes, G., Klimowicz, J., 2015. A preliminary review of bone and teeth abnormalities seen in recent Loxodonta and extinct Mammuthus and Mammut, and suggested implications. Quaternary International 379, 135146.CrossRefGoogle Scholar
Holdø, R.M., Dudley, J.P., McDowell, L.-R., 2002. Geophagy in the African elephant in relation to availability of dietary sodium. Journal of Mammalogy 83, 652664.2.0.CO;2>CrossRefGoogle Scholar
Hooghiemstra, H., van der Hammen, T., 1993. Late Quaternary vegetation history and paleoecology of Laguna Pedro Palo (subandean forest belt, Eastern Cordillera, Colombia). Review of Palaeobotany and Palynology 77, 235262.Google Scholar
Hostikka, S.L., Gong, J., Carpenter, E., 2009. Axial and appendicular skeletal transformations, ligament alterations, and motor neuron loss in Hoxc10 mutants. International Journal of Biological Sciences 5, 397410.CrossRefGoogle ScholarPubMed
Illiger, J.K.W., 1811. Prodromus systematis mammalium et avium additis terminis zoographicis utriusque classis, eorumque versione germanica. C. Salfield, Berolini.CrossRefGoogle Scholar
Johnson, C.N., Bradshaw, C.J.A., Cooper, A., Gillespie, R., Brook, B.W., 2013. Rapid megafaunal extinction following human arrival throughout the New World. Quaternary International 308–309, 273277.CrossRefGoogle Scholar
Kirillova, I.V., Shidlovskiy, F.K., Titov, V.V., 2012. Kastatyakh mammoth from Taimyr. Quaternary International 276–277, 269277.CrossRefGoogle Scholar
Koch, P. L., Barnosky, A. D., 2006. Late Quaternary extinctions: state of the debate. Annual Review of Ecology, Evolution, and Systematics 37, 215250.CrossRefGoogle Scholar
Krzemińska, A., 2008. Preliminary characteristics of pathologies found in the skeletons of mammoths at the Kraków Spadzista Street (B) site. Veterinarija ir Zootechnika 43(65), 5257.Google Scholar
Krzemińska, A., We¸dzicha, S., 2015. Pathological changes on the ribs of woolly mammoths (Mammuthus primigenius). Quaternary International 359–360, 186194.Google Scholar
Krzemińska, A., Wojtal, P., Oliva, M., 2015. Pathological changes on woolly mammoth (Mammuthus primigenius) bones: holes, hollows and other minor changes in the spinous processes of vertebrae. Quaternary International 359–360, 178185.Google Scholar
Kuhry, P., 1988. Palaeobotanical–palaeoecological studies of tropical high Andean peatbog sections (Cordillera Oriental, Colombia). Dissertationes Botanicae 116, 1–241.Google Scholar
Labarca, R., 2003. Relación hombre-mastodonte en el Semiárido Chileno: el caso de Quebrada Quereo (IV Región, Coquimbo). Boletín del Museo Nacional de Historia Natural, Chile 52, 151175.CrossRefGoogle Scholar
Labarca, R., Pacheco, A., 2019. Palaeopathological analysis of a Chilean gomphothere (Proboscidea: Gomphotheriidae). International Journal of Paleopathology 26, 1421.CrossRefGoogle ScholarPubMed
Leshchinskiy, S.V., 2012. Paleoecological investigation of mammoth remains from the Kraków Spadzista Street (B) site. Quaternary International 276–277, 155169.Google Scholar
Leshchinskiy, S.V., 2015. Enzootic diseases and extinction of mammoths as a reflection of deep geochemical changes in ecosystems of Northern Eurasia. Archaeological and Anthropological Sciences 7, 297317.CrossRefGoogle Scholar
Leshchinskiy, S.V., 2017. Strong evidence for dietary mineral imbalance as the cause of osteodystrophy in Late Glacial woolly mammoths at the Berelyokh site (Northern Yakutia, Russia). Quaternary International 445, 146170.CrossRefGoogle Scholar
Leshchinskiy, S.V., Burkanova, E.M., 2003. Kochegur, a new locality for mammoth remains in the Shestakovo beast Solonetz district (Western Siberia). In: Third International Mammoth Conference. Occasional Papers in Earth Sciences 5. Yukon Palaeontology Program, Whitehorse, Canada, pp. 6367.Google Scholar
Lima-Ribeiro, M.S., Nogués-Bravo, D., Carina Terribile, L., Batra, P., Diniz-Filho, J.A.F., 2013. Climate and humans set the place and time of proboscidean extinction in late Quaternary of South America. Palaeogeography, Palaeoclimatology, Palaeoecology 392, 546556.CrossRefGoogle Scholar
Lister, A.M., 2009. Late-glacial mammoth skeletons (Mammuthus primigenius) from Condover (Shropshire, UK): anatomy, pathology, taphonomy and chronological significance. Geological Journal 44, 447479.CrossRefGoogle Scholar
Lucas, S.G., 2013. The palaeobiogeography of South American gomphotheres. Journal of Paleogeography 2, 1940.Google Scholar
MacFadden, B.J., 2000. Middle Pleistocene climate change recorded in fossil mammal teeth from Tarija, Bolivia, and upper limit of the Ensenadan Land-Mammal Age. Quaternary Research 54, 121131.CrossRefGoogle Scholar
Malhi, Y., Doughty, C., Galetti, M., Smith, F., Svenning, J.-C., Terborgh, J., 2016. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proceedings of the National Academy of Sciences USA 113, 838846.CrossRefGoogle ScholarPubMed
Martin, P.S., 1984. Prehistoric overkill: the global model. In: Martin, P.S., Klein, R.G. (Eds.), Quaternary Extinctions: A Prehistoric Revolution. Tucson: University of Arizona Press, pp. 354403.Google Scholar
Maschenko, E.N., 2002. Individual development, biology and evolution of the woolly mammoth Mammuthus primigenius (Blumenbach, 1799). Cranium 19, 1120.Google Scholar
Maschenko, E.N., Gablina, S.S., Tesakov, A.S., Simakova, A.N., 2006. The Sevsk woolly mammoth (Mammuthus primigenius) site in Russia: taphonomic, biological, and behavorial interpretations. Quaternary International 142–143, 147165.CrossRefGoogle Scholar
Maschenko, E.N., Potapova, O.R., Vershinina, A., Shapiro, B., Streletskaya, I.D., Vasiliev, A.A., Oblogov, G. E., et al. , 2017. The Zhenya mammoth (Mammuthus primigenius (Blum.)): taphonomy, geology, age, morphology and ancient DNA of a 48,000-year-old frozen mummy from western Taimyr, Russia. Quaternary International 445, 104134.CrossRefGoogle Scholar
Masharawi, Y., Peleg, S., Albert, H., Dar, G., Steinberg, N., Medlej, B., Abbas, J., et al. , 2008. Facet asymmetry in normal vertebral growth. Characterization and etiologic theory of scoliosis. Spine 33, 898902.Google ScholarPubMed
Masharawi, Y., Rothschild, B., Dar, G., Peleg, S., Robinson, D., Been, E., Hershkovitz, I., 2004. Facet orientation in the thoracolumbar spine. Three-dimensional anatomic and biomechanical analysis. Spine 29, 17551763.CrossRefGoogle ScholarPubMed
Meltzer, D.J., 2020. Overkill, glacial history, and the extinction of North America's Ice Age megafauna. Proceedings of the National Academy of Sciences USA 117, 2855528563.CrossRefGoogle ScholarPubMed
Mothé, D., Avilla, L.S., 2015. Mythbusting evolutionary issues on South American Gomphotheriidae (Mammalia: Proboscidea). Quaternary Science Reviews 110, 2335.CrossRefGoogle Scholar
Mothé, D., Avilla, L.S., Araújo-Júnior, H.I., Rotti, A., Prous, A., Azevedo, S.A.K., 2020. An artifact embedded in an extinct proboscidean sheds new light on human-megafauna interactions in the Quaternary of South-America. Quaternary Science Reviews 229, 18.CrossRefGoogle Scholar
Mothé, D., Avilla, L.S., Asevedo, L., Borges-Silva, L., Rosas, M., Labarca-Encina, R., Souberlich, R., et al. , 2017. Sixty years after “The Mastodonts of Brazil”: the state of the art of South American proboscideans (Proboscidea, Gomphotheriidae). Quaternary International 443, 5264.CrossRefGoogle Scholar
Mothé, D., Avilla, L.S., Cozzuol, M.A., Winck, G.R., 2012. Taxonomic revision of the Quaternary gomphotheres (Mammalia: Proboscidea: Gomphotheriidae) from the South American lowlands. Quaternary International 276–277, 27.CrossRefGoogle Scholar
Mothé, D., Avilla, L.S., Winck, G.R., 2010. Population structure of the gomphothere Stegomastodon waringi (Mammalia: Proboscidea: Gomphotheriidae) from the Pleistocene of Brazil. Anais da Academia Brasileira de Ciências 82, 983996.CrossRefGoogle ScholarPubMed
Mothé, D., Ferreti, M., Avilla, L.S., 2019. Running over the same old ground: Stegomastodon never roamed South America. Journal of Mammalian Evolution 26, 165177.Google Scholar
Muñoz, P., Gorin, G., Parra, N., Velásquez, C., Lemus, D., Monsalve-M, C. Jojoa, M., 2017. Holocene climatic variations in the Western Cordillera of Colombia: a multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ. Quaternary Science Reviews 155, 159178.CrossRefGoogle Scholar
Oliveira, K., Asevedo, L., Calegari, M.R., Gelfo, J.N., Mothé, D., Avilla, L.S., 2021. From oral pathology to feeding ecology: the first dental calculus paleodiet study of a South American native megamammal. Journal of South American Earth Sciences 109, 103281.CrossRefGoogle Scholar
Owen-Smith, N., 1992. Megaherbivores: The Influence of Very Large Body Size on Ecology. Cambridge University Press, Cambridge.Google Scholar
Páramo-Fonseca, M.E., Escobar-Quemba, I.C., 2010. Restos mandibulares de mastodonte encontrados en cercanías de Cartagena, Colombia. Geología Colombiana 35, 5057.Google Scholar
Pereira, D., Ramos, E., Branco, J., 2015. Osteoarthristis. Acta Medica Portuguesa 28, 99106.CrossRefGoogle Scholar
Petrova, E., Masutin, V.V., Zhuykova, I.A., 2017. Two incomplete skeletons of woolly mammoth (Mammuthus primigenius) from the late Pleistocene in the Kirov Region, European Russia. Russian Journal of Theriology 16, 157175.CrossRefGoogle Scholar
Prado, J.L., Alberci, M.T., Azanza, B., Sánchez, B., Frassinetti, D., 2005. The Pleistocene Gomphotheriidae (Proboscidea) from South America. Quaternary International 126–128, 2130.CrossRefGoogle Scholar
Prado, J.L., Alberdi, M.T., Sánchez, B., Azanza, B., 2003. Diversity of the Pleistocene gomphotheres (Gomphotheriidae, Proboscidea) from South America. Deinsea 9, 347363.Google Scholar
Prates, L., Perez, I., 2021. Late Pleistocene South American megafaunal extinctions associated with rise of fishtail points and human population. Nature Communications 12, article 2175.CrossRefGoogle ScholarPubMed
Qi, L., Liu, Y., Guo, R., Lv, X., Wang, Q., Zhu, J., Zhang, B., Dai, M., 2018. A study of lumbar disc herniation and facet joint asymmetry. International Surgery 103, 8794.Google Scholar
Reumer, J.W.F., ten Broek, C.M.A., Galis, F., 2014. Extraordinary incidence of cervical ribs indicates vulnerable condition in late Pleistocene mammoths. PeerJ 2, e318. https://dx.doi.org/10.7717/peerj.318.CrossRefGoogle ScholarPubMed
Rios, L., Kivell, T.L., Lalueza-Fox, C., Estalrrich, A., García-Tabernero, A., Huguet, R., Quintino, Y., de la Rasilla, M., Rosas, A., 2019. Skeletal anomalies in the Neandertal family of El Sidrón (Spain) support a role of inbreeding in Neandertal extinction. Nature, Scientific Reports 9, article 1697.Google ScholarPubMed
Rothschild, B., Wang, X., Shoshani, J., 1994. Spondyloarthropathy in proboscideans. Journal of Zoo and Wildlife Medicine 25, 360366.Google Scholar
Sach, F., Dierenfeld, E.S., Langley-Evans, S.C., Watts, M.J., Yon, L., 2019. African savanna elephants (Loxodonta africana) as an example of a herbivore making movement choices based on nutritional needs. PeerJ 7, e6260. https://dx.doi.org/10.7717/peerj.6260.CrossRefGoogle ScholarPubMed
Sakalauskienė, G., Jauniškienė, D., 2010. Osteoarthritis: etiology, epidemiology, impact on the individual and society and the main principles of management. Medicina (Kaunas) 46, 790797.CrossRefGoogle ScholarPubMed
Saltré, F., Chadoeuf, J., Peters, K.J., Mcdowell, M.C., Friedrich, T., Timmermann, A., Ulm, S., Bradshaw, CJ., 2019. Climate-human interaction associated with southeast Australian megafauna extinction patterns. Nature Communications 10, 19.CrossRefGoogle ScholarPubMed
Sánchez, B., Prado, J.L., Alberdi, M.T., 2003. Paleodiet, ecology, and extinction of Pleistocene gomphotheres (Proboscidea) from Pampean Region (Argentina). Coloquios de Paleontología 1, 617625Google Scholar
Sánchez, B., Prado, J.L., Alberdi, M.T., 2004. Feeding ecology, dispersal, and extinction of south American Pleistocene gomphotheres (Gomphotheriidae, Proboscidea). Paleobiology 30, 146161.2.0.CO;2>CrossRefGoogle Scholar
Schreve-Brinkman, E., 1978. A palynological study of the upper Quaternary sequence in the El Abra Corridor and rock shelters (Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology 25, 1109.CrossRefGoogle Scholar
Sokolove, J., Lepus, C.M., 2012. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Therapeutic Advances in Musculoskeletal Disease 5, 7794.CrossRefGoogle Scholar
Stinnesbeck, S.R., Frey, E., Aviles Olguin, J., Gonzalez, A.H., Velazquez Morlet, A., Stinnesbeck, W., 2020. Life and death of the ground sloth Xibalbaonyx oviceps from the Yucatán Peninsula, Mexico. Historical Biology 33, 26102626.CrossRefGoogle Scholar
Stuart, A.J., 2015. Late Quaternary megafaunal extinctions on the continents: a short review. Geological Journal 50, 338363.CrossRefGoogle Scholar
Suárez-Ibarra, J.Y., Cardoso, G., Asevedo, L., De Melo França, L., Dantas, M., Cruz-Guevara, L.E., Rojas-Mantilla, A.F., Ribeiro, A.M., 2021. Quaternary proboscidean (Mammalia) remains of the UIS Geological Museum, Colombia. Revista Brasileira de Paleontologia 24, 7075.CrossRefGoogle Scholar
Taylor, J.R., 1983. Scoliosis and growth. Patterns of asymmetry in normal vertebral growth. Acta Orthopaedica Scandinavica 54, 596602.CrossRefGoogle ScholarPubMed
van der Geer, A.A.E., Galis, F., 2017. High incidence of cervical ribs indicates vulnerable condition in Late Pleistocene woolly rhinoceroses. PeerJ 5, e3684. https://doi.org/10.7717/peerj.3684.CrossRefGoogle ScholarPubMed
van der Hammen, T., 1974. The Pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography 1, 326.CrossRefGoogle Scholar
van der Hammen, T., 1978. Stratigraphy and environments of the Upper Quaternary of the El Abra corridor and rock shelters (Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology 25, 111162.CrossRefGoogle Scholar
van der Hammen, T., 1986. Cambios medioambientales y la extinción del Mastodonte en el norte de los Andes. Revista de Antropología 2, 2733.Google Scholar
van der Hammen, T., González, E., 1960. Upper Pleistocene and Holocene climate and vegetation of the Sabana de Bogotá (Colombia, South America). Leidsche Geologische Mededelingen 25, 126315.Google Scholar
van der Hammen, T., González, E., 1965. A pollen diagram from “Laguna de la Herrera” (Sabana de Bogotá). Leidsche Geologische Mededelingen 32, 183191.Google Scholar
van der Hammen, T., Hooghiemstra, H., 2003. Interglacial–glacial Fúquene-3 pollen record from Colombia: an Eemian to Holocene climate record. Global and Planetary Change 36, 181199.Google Scholar
van der Kraan, P.M., van den Berg, W.B., 2007. Osteophytes: relevance and biology. Osteoarthritis Cartilage 15, 237244.CrossRefGoogle ScholarPubMed
van Geel, B., van der Hammen, T., 1973. Upper Quaternary vegetational and climatic sequence of the Fúquene area (Eastern Cordillera, Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology 14, 992.CrossRefGoogle Scholar
van't Veer, R., Islebe, G.A., Hooghiemstra, H., 2000. Climatic change during the Younger Dryas chron in northern South America: a test of the evidence. Quaternary Science Reviews 19, 18211835.CrossRefGoogle Scholar
Varela-Lasheras, I., Bakker, A.J., van der Mije, S.D., Metz, J.A.J., van Alphen, J., Galis, F., 2011. Breaking evolutionary and pleiotropic constraints in mammals: on sloths, manatees and homeotic mutations. EvoDevo 2, 127.CrossRefGoogle ScholarPubMed
Villmoare, B., 2018. Early Homo and the role of the genus in paleoanthropology. American Journal of Physical Anthropology 165, 7289.CrossRefGoogle ScholarPubMed
von den Driesch, A., 1976. A guide to the measurement of animal bones from archaeological sites: as developed by the Institut für Palaeoanatomie, Domestikationsforschung und Geschichte der Tiermedizin of the University of Munich. Peabody Museum Bulletin 1, Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge, MA.Google Scholar
Wooler, M.J., Bataille, C., Druckenmiller, P., Erickson, G.M., Groves, P., Haubenstock, N., Howe, T., et al. , 2021. Lifetime mobility of an arctic woolly mammoth. Science 373, 806808.Google Scholar
Xeller, C.F., Sanders, M., Athari, M., Gibson, R., 2014. The Relationship of Facet Asymmetry, Spina Bifida Occulta, and Transitional Vertebrae in the Lumbar Spine to Backache. American Academy of Neurological and Orthopaedic Surgeons (accessed March 16, 2021). https://aanos.org/the-relationship-of-facet-asymmetry-spina-bifida-occulta-and-transitional-vertebrae-in-the-lumbar-spine-to-backache.Google Scholar