Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-21T13:14:39.227Z Has data issue: false hasContentIssue false

The fossil record and macroevolutionary history of North American ungulate mammals: standardizing variation in intensity and geography of sampling

Published online by Cambridge University Press:  08 April 2016

Jonathan D. Marcot*
Affiliation:
Department of Animal Biology, University of Illinois, Urbana, Illinois 61801, U.S.A. E-mail: jmarcot@illinois.edu

Abstract

The record of the taxonomic evolution of North American ungulates is critical to our understanding of mammalian evolution and environmental change throughout the Cenozoic. The distribution of sampling in the ungulate fossil record over time and geographic space and the degree to which this biases the observed patterns of taxonomic evolution is poorly understood. To address these issues, I placed fossil collections and occurrences drawn from the Paleobiology Database into 2-Myr time intervals between 55 and 1 Ma. I determined the variation in numbers of fossil collections and occurrences, using three metrics to measure geographic variation: first, the area of the convex hull containing all collections in an interval, to determine the areal coverage of sampling; second, the mean pairwise geographic distance among collections as a measurement of the dispersion of collections within that area; and third, the interval-to-interval migration of the geographic centroid of all collections, to calculate changes in the geographic location of sampling. Each of these showed considerable variation over the Cenozoic, and both the area of the convex hull (ACH) encompassing all collections in an interval, and mean pairwise distance (MPWD) among them showed increasing trends over time.

To minimize the effect of variation in numbers of fossil samples over time, I used standard sample-standardization procedures. To minimize the effect of geographic variation in sampling over time, I standardized the area of sampling among intervals. I also employed both standardizations sequentially. Each standardization procedure had surprisingly little effect on observed patterns of taxonomic richness and rates. This indicates that, for North American ungulates, neither variation in number nor geographic distribution of fossil samples exerts an overwhelming influence on perceived macroevolutionary patterns. These results confirm the ungulate fossil record as a critical and faithful record for our understanding of Cenozoic environmental change and the mammalian evolutionary response.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127:285311.Google Scholar
Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707733.Google Scholar
Alroy, J. 2009. Speciation and extinction in the fossil record of North American mammals. Pp. 301323inButlin, R. K., Bridle, J. R., and Schluter, D., eds. Speciation and patterns of diversity. Cambridge University Press, Cambridge.Google Scholar
Alroy, J., Koch, P. L., and Zachos, J. C. 2000. Global climate change and North American mammalian evolution. InErwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26 (Suppl. to No. 4):259288.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nümberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.Google Scholar
Badgley, C., and Fox, D. L. 2000. Ecological biogeography of North American mammals: species density and ecological structure in relation to environmental gradients. Journal of Biogeography 27:14371467.Google Scholar
Barnosky, A. D., and Carrasco, M. A. 2002. Effects of Oligo-Miocene global climate changes on mammalian species richness in the northwestern quarter of the USA. Evolutionary Ecology Research 4:811841.Google Scholar
Barnosky, A. D., Carrasco, M. A., and Davis, E. B. 2005. The impact of the species-area relationship on estimates of paleodiversity. PLoS Biology 3 (8):e266.Google Scholar
Barrett, P. M., and Willis, K. J. 2001. Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biological Reviews 76:411447.Google Scholar
Behrensmeyer, A. K., Kidwell, S. M., and Gastaldo, R. A. 2000. Taphonomy and paleobiology. InErwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26 (Suppl. to No. 4):103147.Google Scholar
Bevis, M., and Cambareri, G. 1987. Computing the area of a spherical polygon of arbitrary shape. Mathematical Geology 19:335346.Google Scholar
Blondel, C. 2001. The Eocene-Oligocene ungulates from Western Europe and their environment. Palaeogeography, Palaeoclimatology, Palaeoecology 168:125139.Google Scholar
Bobe, R. 2006. The evolution of arid ecosystems in eastern Africa. Journal of Arid Environments 66:564584.Google Scholar
Bobe, R., and Behrensmeyer, A. K. 2004. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeography, Palaeoclimatology, Palaeoecology 207:399420.Google Scholar
Bodmer, R. E. 1989. Ungulate biomass in relation to feeding strategy within Amazonian forests. Oecologia 81:547550.Google Scholar
Bush, A. M., Markey, M. J., and Marshall, C. R. 2004. Removing bias from diversity curves: the effects of spatially organized biodiversity on sampling-standardization. Paleobiology 30:666686.Google Scholar
Butler, R. J., Barrett, P. M., Kenrick, P. R., and Penn, M. G. 2009a. Diversity patterns amongst herbivorous dinosaurs and plants during the Cretaceous: implications for hypotheses of dinosaur/angiosperm co-evolution. Journal of Evolutionary Biology 22:446459.Google Scholar
Butler, R. J., 2009b. Testing co-evolutionary hypotheses over geological timescales: interactions between Mesozoic non-avian dinosaurs and cycads. Biological Reviews 84:7389.Google Scholar
Butler, R. J., Barrett, P. M., Penn, M. G., and Kenrick, P. R. 2010. Testing coevolutionary hypotheses over geological timescales: interactions between Cretaceous dinosaurs and plants. Biological Journal of the Linnean Society 100:115.Google Scholar
Butler, R. J., Benson, R. B. J., Carrano, M. T., Mannion, P. D., and Upchurch, P. 2011. Sea level, dinosaur diversity and sampling biases: investigating the ‘common cause' hypothesis in the terrestrial realm. Proceedings of the Royal Society of London B 278:11651170.Google Scholar
Ciampaglio, C. N., Kemp, M., and McShea, D. W. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27:695715.Google Scholar
Cifelli, R. L. 1981. Patterns of evolution among the Artiodactyla and Perissodactyla (Mammalia). Evolution 35:433440.Google Scholar
Clapham, M. E., Shen, S., and Bottjer, D. J. 2009. The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology 35:3250.Google Scholar
Cromsigt, J. P. G. M., Prins, H. H. T., and Olff, H. 2009. Habitat heterogeneity as a driver of ungulate diversity and distribution patterns: interaction of body mass and digestive strategy. Diversity and Distributions 15:513522.Google Scholar
DeGusta, D. 2005. Methods for inferring paleohabitats from discrete traits of the bovid postcranial skeleton. Journal of Archaeological Science 32:11151123.Google Scholar
Derry, J. F., and Dougill, A. J. 2008. Water Location, piospheres and a review of evolution in African ruminants. African Journal of Range and Forage Science 25:7992.Google Scholar
DeSantis, L. R. G., Beavins Tracy, R. A., Koontz, C. S., Roseberry, J. C., and Velasco, M. C. 2012. Mammalian niche conservation through deep time. PLoS ONE 7 (4):e35624.Google Scholar
du Toit, J. T., and Cumming, D. H. M. 1999. Functional significance of ungulate diversity in African savannas and the ecological implications of the spread of pastoralism. Biodiversity and Conservation 8:16431661.Google Scholar
Flessa, K. W., and Sepkoski, J. J. Jr. 1978. On the relationship between Phanerozoic diversity and changes in habitable area. Paleobiology 4:359366.Google Scholar
Foote, M. 1992. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:116.Google Scholar
Foote, M. 1993. Contributions of individual taxa to overall morphological disparity. Paleobiology 19:403419.Google Scholar
Foote, M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology Memoir 1. Paleobiology 25 (Suppl. to No. 2).Google Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. InErwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26 (Suppl. to No. 4):74102.Google Scholar
Hadly, E. A., Spaeth, P. A., and Li, C. 2009. Nich conservatism above the species level. Proceedings of the National Academy of Sciences USA 106 (Suppl. 2):19,70719,714.CrossRefGoogle Scholar
Hopcraft, J. G. C., Olff, H., and Sinclair, A. R. E. 2010. Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends in Ecology and Evolution 25:119128.CrossRefGoogle ScholarPubMed
Hortal, J., Rodríguez, J., Nieto-Díaz, M., and Lobo, J. M. 2008. Regional and environmental effects on the species richness of mammal assemblages. Journal of Biogeography 35:12021214.CrossRefGoogle Scholar
Hulbert, R. C. Jr. 1993. Taxonomic evolution in North American Neogene horses (subfamily Equinae): the rise and fall of an adaptive radiation. Paleobiology 19:216234.Google Scholar
Isaac, N. J. B., Jones, K. E., Gittleman, J. L., and Purvis, A. 2005. Correlates of species richness in mammals: body size, life history, and ecology. American Naturalist 165:600607.Google Scholar
Jacobs, B. F., Kingston, J. D., and Jacobs, L. L. 1999. The origin of grass-dominated ecosystems. Annals of the Missouri Botanical Garden 86:590643.Google Scholar
Janis, C. M. 1990. Correlation of cranial and dental variables with dietary preferences in mammals: a comparison of macropodoids and ungulates. Memoirs of the Queensland Museum 28:349366.Google Scholar
Janis, C. M. 1993. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics 24:467500.Google Scholar
Janis, C. M. 1995. Correlations between craniodental morphology and feeding behavior in ungulates: reciprocal illuminaion between living and fossil taxa. 7698inThomason, J. J., ed. Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge.Google Scholar
Janis, C. M. 2000a. The endemic ruminants of the Neogene of North America. Pp. 2637inVrba, E. S. and Schaller, G. B., eds. Antelopes, deer, and relatives: fossil record, behavioral ecology, systematics and conservation. Yale University Press, New Haven, Conn.Google Scholar
Janis, C. M. 2000b. Patterns in the eovlution of herbivory in large terrestrial mammals: the Paleogene of North America. Pp. 168222inSues, H.-D., ed. Evolution of herbivory in terrestrial vertebrates: perspectives from the fossil record. Cambridge University Press, Cambridge.Google Scholar
Janis, C. M., and Wilhelm, P. B. 1993. Were there mammalian pursuit predators in the Tertiary? Dances with wolf avatars. Journal of Mammalian Evolution 1:103125.Google Scholar
Janis, C. M., Damuth, J., and Theodor, J. M. 2000. Miocene ungulates and terrestrial primary productivity: where have all the browsers gone? Proceedings of the National Academy of Sciences USA 97:78997904.Google Scholar
Janis, C. M., 2002a. The origins of the North American grassland biome: the story from the hoofed mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 177:183198.Google Scholar
Janis, C. M., 2004. The species richness of Miocene browsers, and implications for habitat type and primary productivity in the North American grassland biome. Palaeogeography, Palaeoclimatology, Palaeoecology 207:371398.Google Scholar
Janis, C. M., Theodor, J. M., and Boisvert, B. 2002b. Locomotor evolution in camels revisited: a quantitative analysis of pedal anatomy and the acquisition of the pacing gait. Journal of Vertebrate Paleontology 22:110121.Google Scholar
Kappelman, J. 1988. Morphology and locomotor adaptations of the bovid femur in relation to habitat. Journal of Morphology 198:119130.Google Scholar
Katz, M. E., Miller, K. G., Wright, J. D., Wade, B. S., Browning, J. V., Cramer, B. S., and Rosenthal, Y. 2008. Stepwise transition from the Eocene greenhouse ot the Oligocene icehouse. Nature Geoscience 1:329334.Google Scholar
Kelt, D. A., and Van Vuren, D. H. 2001. The ecology and macroecology of mammalian home range area. American Naturalist 157:637645.Google Scholar
Kohn, M. J., and Fremd, T. J. 2008. Miocene tectonics and climate forcing of biodiversity, western United States. Geology 36:783786.Google Scholar
Liu, Z., Pagani, M., Zinniker, D., DeConto, R. M., Huber, M., Brinkhuis, H., Shah, S. R., Leckie, R. M., and Pearson, A. 2009. Global cooling during the Eocene-Oligocene climate transition. Science 323:11871190.Google Scholar
Lyons, S. K. 2003. A quantitative assessment of the range shifts of Pleistocene mammals. Journal of Mammalogy 84:385402.2.0.CO;2>CrossRefGoogle Scholar
MacArthur, R. H., and Wilson, E. O. 1967. The theory of island biogeography. Princeton University Press, Princeton, N.J.Google Scholar
MacFadden, B. J. 2000. Cenozoic mammalian herbivores from the Americas: reconstructing ancient diets and terrestrial communities. Annual Review of Ecology and Systematics 31:3359.Google Scholar
Mannion, P. D., Upchurch, P., Carrano, M. T., and Barrett, P. M. 2011. Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biological Reviews 86:157181.Google Scholar
Matthee, C. A., Eick, G. N., Willows-Munro, S., Montgelard, C., Pardini, A. T., and Robinson, T. J. 2007. Indel evolution of mammalian introns and the utility of non-coding nuclear markers in eutherian phylogenetics. Molecular Phylogenetics and Evolution 42:827837.Google Scholar
Matthew, W. D. 1926. The evolution of the horse: a record and its interpretation. Quarterly Review of Biology 1:139185.Google Scholar
McKinney, F. K. 1990. Classifying and analysing evolutionary trends. Pp. 2858inMcNamara, K. J., ed. Evolutionary trends. University of Arizona Press, Tucson.Google Scholar
Mendoza, M., Janis, C. M., and Palmqvist, P. 2002. Characterizing complex craniodental patterns related to feeding behavior in ungulates: a multivariate approach. Journal of Zoology 258:223246.Google Scholar
Meng, J., and McKenna, M. C. 1998. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature 394:364367.Google Scholar
Mohr, C. O. 1947. Table of equivalent populations of North American small mammals. American Midland Naturalist 37:223249.CrossRefGoogle Scholar
Murphy, W. J., Pringle, T. H., Crider, T. A., Springer, M. S., and Miller, W. 2007. Using genomic data to unravel the root of the placental mammal phylogeny. Genome Research 17:413421.Google Scholar
Olff, H., Ritchie, M. E., and Prins, H. H. T. 2002. Global environmental controls of diversity in large herbivores. Nature 415:901904.Google Scholar
Peters, S. E., and Ausich, W. I. 2008. A sampling-adjusted macroevolutionary history for Ordovician–Early Silurian crinoids. Paleobiology 34:104116.Google Scholar
Pettorelli, N., Bro-J⊘rgensen, J., Durant, S. M., Blackburn, T., and Carbone, C. 2009. Energy availability and density estimates in African ungulates. American Naturalist 173:698704.Google Scholar
Prins, H. H. T., and Fritz, H. 2008. Species diversity of browsing and grazing ungulates: consequences for the structure and abundance of secondary production. Pp. 179200inGordon, I. J. and Prins, H. H. T., eds. The ecology of browsing and grazing. Springer, Berlin.Google Scholar
Prothero, D. R. 1999. Does climate change drive mammalian evolution? GSA Today 9 (9):17.Google Scholar
Prothero, D. R. 2004. Did impacts, volcanic eruptions, or climate change affect mammalian evolution? Palaeogeography, Palaeoclimatology, Palaeoecology 214:283294.Google Scholar
Prothero, D. R., and Heaton, T. H. 1996. Faunal stability during the Early Oligocene climatic crash. Palaeogeography, Palaeoclimatology, Palaeoecology 127:257283.Google Scholar
Raup, D. M. 1976a. Species diversity in the Phanerozoic: a tabulation. Paleobiology 2:279288.Google Scholar
Raup, D. M. 1976b. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.Google Scholar
Raup, D. M. 1979. Biases in the fossil record of species and genera. Bulletin of Carnegie Museum of Natural History 13:8591.Google Scholar
Raup, D. M., and Crick, R. E. 1982. Kosmoceras: evolutionary jumps and sedimentary breaks. Paleobiology 8:90100.Google Scholar
Retallack, G. J. 1992. Paleosols and changes in climate and vegetation across the Eocene/Oligocene boundary. Pp. 382398inProthero, D. R. and Berggren, W. A., eds. Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, N.J.Google Scholar
Retallack, G. J., Orr, W. N., Prothero, D. R., Duncan, R. A., Kester, P. R., and Ambers, C. P. 2004. Eocene-Oligocene extinction and paleoclimatic change near Eugene, Oregon. Geological Society of America Bulletin 116:817839.Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.Google Scholar
Sepkoski, J. J. Jr. 1976. Species diversity in the Phanerozoic: species-area effects. Paleobiology 2:298303.Google Scholar
Sepkoski, J. J. Jr. 1998. Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society of London B 353:315326.Google Scholar
Sheldon, N. D., and Hamer, J. M. M. 2010. Evidence for an early sagebrush ecosystem in the latest Eocene of Montana. Journal of Geology 118:425445.CrossRefGoogle Scholar
Snyder, J. P. 1987. Map projections—a working manual. U.S. Geological Survey Professional Paper 1395.Google Scholar
Spencer, L. M. 1995. Morphological correlates of dietary resource partitioning in the African Bovidae. Journal of Mammalogy 76:448471.CrossRefGoogle Scholar
Springer, M. S., Stanhope, M. J., Madsen, O., and de Jong, W. W. 2004. Molecules consolidate the placental mammal tree. Trends in Ecology and Evolution 19:430438.Google Scholar
Strömberg, C. A. E. 2002. The origin and spread of grass-dominated ecosystems in the late Tertiary of North America: preliminary results concerning the evolution of hypsodonty. Palaeogeography, Palaeoclimatology, Palaeoecology 177:5975.Google Scholar
Strömberg, C. A. E. 2004. Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the late Eocene to early Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology 207:239275.Google Scholar
Strömberg, C. A. E. 2005. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proceedings of the National Academy of Sciences USA 102:11,98011,984.Google Scholar
Townsend, K. E. B., Rasmussen, D. T., Murphey, P. C., and Evanoff, E. E. 2010. Middle Eocene habitat shifts in the North American western interior: a case study. Palaeogeography, Palaeoclimatology, Palaeoecology 297:144158.Google Scholar
Tsubamoto, T., Takai, M., and Egi, N. 2004. Quantitative analyses of biogeography and faunal evolution of Middle to Late Eocene mammals in East Asia. Journal of Vertebrate Paleontology 24:657667.Google Scholar
Turpie, J. K., and Crowe, T. M. 1994. Patterns of distribution, diversity and endemism of larger African mammals. South African Journal of Zoology 29:1932.Google Scholar
Van Valen, L. 1971. Adaptive zones and the orders of mammals. Evolution 25:420428.Google Scholar
Vrba, E. S. 1987. Ecology in relation to speciation rates: some case histories of Miocene-Recent mammal clades. Evolutionary Ecology 1:283300.Google Scholar
Vrba, E. S. 1992. Mammals as a key to evolutionary theory. Journal of Mammalogy 73:128.Google Scholar
Wall, P. D., Ivany, L. C., and Wilkinson, B. H. 2009. Revisiting Raup: exploring the influence of outcrop area on diversity in light of modern sample-standardization techniques. Paleobiology 35:146167.Google Scholar
Webb, S. D. 1977. A history of savanna vertebrates in the New World, Part I. North America. Annual Review of Ecology and Systematics 8:355380.Google Scholar
Webb, S. D. 1983. The rise and fall of the Late Miocene ungulate fauna in North America. Pp. 267306inNitecki, M. H., ed. Coevolution. University of Chicago Press, Chicago.Google Scholar
Webb, S. D., Hulbert, R. C. Jr., and Lambert, W. D. 1995. Climatic implications of large-herbivore distributions in the Miocene of North America. Pp. 91108inVrba, E. S., Denton, G. H., Partridge, T. C., and Burckle, L. H., eds. Paleoclimate and evolution, with emphasis on human origins. Yale University Press, New Haven, Conn.Google Scholar
Willig, M. R., Lyons, S. K., and Stevens, R. D. 2009. Spatial methods for the macroecological study of bats. Pp. 216245inKunz, T. and Parsons, S., eds. Ecological and behavioral methods for the study of bats. Johns Hopkins University Press, Baltimore.Google Scholar
Wing, S. L. 1998. Tertiary vegetation of North America as a context for mammalian evolution. Pp. 3765inJanis, C. M., Scott, K. M., and Jacobs, L. L., eds. Evolution of Tertiary mammals of North America. Cambridge University Press, New York.Google Scholar
Wolfe, J. A. 1971. Tertiary climatic fluctuations and methods of analysis of tertiary floras. Palaeogeography, Palaeoclimatology, Palaeoecology 9:2757.Google Scholar
Worton, B. J. 1995. A convex hull-based estimator of home-range size. Biometrics 51:12061215.Google Scholar
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.Google Scholar
Zachos, J. C., Dickens, G. R., and Zeebe, R. D. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279283.Google Scholar
Zanazzi, A., Kohn, M. J., MacFadden, B. J., and Terry, D. O. Jr. 2007. Large temperature drop across the Eocene-Oligocene transition in central North America. Nature 445:639642.Google Scholar