Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T12:46:27.429Z Has data issue: false hasContentIssue false

Are Mesozoic wood growth rings climate-induced?

Published online by Cambridge University Press:  08 April 2016

Anne-Lise Brison
Affiliation:
Laboratoire de Paléobotanique de l'Université Lyon-1, 7 rue Dubois, F69622 Villeurbanne cedex, France
Marc Philippe*
Affiliation:
Laboratoire de Paléobotanique de l'Université Lyon-1 and FRE2158 du CNRS, 401A, 7 rue Dubois, F69622 Villeurbanne cedex, France. E-mail: philippe@univ-lyon1.fr
Frédéric Thevenard
Affiliation:
Laboratoire de Paléobotanique de l'Université Lyon-1 and FRE2158 du CNRS, 401A, 7 rue Dubois, F69622 Villeurbanne cedex, France. E-mail: philippe@univ-lyon1.fr
*
*Corresponding author

Abstract

Growth rings of Mesozoic fossil woods have often been used for paleoclimatological inferences. Most of the studies, however, rest upon uniformitarian deductions based on the observation of conifers from the present boreal temperate realm, whereas warm climates dominated during the Mesozoic. We propose a new approach, based on the study of the distribution of growth ring types among 643 samples from the Jurassic-Cretaceous interval. A clear picture emerges from analysis, consistent with what is known of Mesozoic climates from other sources. Woods with no rings are encountered in a wide latitudinal zone, extending up to 75°N and 65°S during the Late Cretaceous. Woods with well-developed latewood do not occur at low latitude and disappeared from the Northern Hemisphere during the Late Cretaceous. Our data set also shows that the taxonomic distribution of growth ring types is not regular. Among the genera encountered, 40% can build only one type of ring. The genus Agathoxylon never displays thick latewood, although it ranges from 75°S to 70°N. This demonstrates that growth ring studies must include a taxonomic analysis.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alvin, K. L. 1982. Cheirolepidiaceae: biology, structure and palaeoecology. Review of Palaeobotany and Palynology 37:7198.Google Scholar
Antevs, E. 1916. Das Fehlen respektive Vorkommen des Jahresringe in paläo- und Mesozoischen Hölzer und das klimatische Zeugnis dieser Erscheinungen. Geoliska Föreningens i Stockholm Förhandlingar 38:212223.CrossRefGoogle Scholar
Ash, S. R., and Creber, G. T. 1992. Palaeoclimatic interpretation of the wood structures of the trees in the Chinle Formation (Upper Triassic), Petrified Forest National Park, Arizona, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 96:299317.CrossRefGoogle Scholar
Bamford, M., and Philippe, M. 2001. Gondwanan Jurassic-Early Cretaceous homoxylous woods: a nomenclatural revision of the genera with taxonomical notes. Review of Palaeobotany and Palynology 113:287297.Google Scholar
Barron, E. J., Harrison, C. G. A., Sloan, J. L., and Hay, W. W. 1981. Paleogeography, 180 million years ago to the present. Eclogae Geologicae Helvetiae 74:443470.Google Scholar
Borchert, R. 1999. Climatic periodicity, phenology and cambium activity in tropical dry forest trees. International Association of Wood Anatomists Journal 20:239247.Google Scholar
Brea, M. 1998. Analisis de los anillos de crecimiento en lenos fossiles de coniferas de la formación La Meseta, Isla Seymour' Marambio, Antartida. Associación Paleontología Argentina Publicación Especial 5:163175.Google Scholar
Chaloner, W. G., and Creber, G. T. 1989. The phenomenon of forest growth in Antarctica: a review. In Crame, J. A., ed. Origins and evolution of the Antarctic biota. Geological Society of America Special Publication 47:8588.Google Scholar
Chapman, J. L. 1994. Distinguishing internal developmental characteristics from external palaeoenvironmental effects in fossil woods. Review of Palaeobotany and Palynology 81:1932.CrossRefGoogle Scholar
Conwentz, H. 1880. Die fossilen Hölzer von Karlsdorf am Zobten. Ein Beitrage zur Kenntniss der im norddeutschen Diluvium vorkommenden Geschiebhölzer. Maruschke und Berednt, Bratislava, Slovakia.Google Scholar
Cook, E. R. 1987. The decomposition of tree-ring series for environmental studies. Tree-ring Bulletin 47:3759.Google Scholar
Creber, G. T., and Chaloner, W. G. 1984. Influence of environmental factors on the wood structure of living and fossil trees. Botanical Review 50:357448.CrossRefGoogle Scholar
Creber, G. T., and Chaloner, W. G. 1985. Tree growth in the Mesozoic and Early Tertiary and the reconstruction of palaeoclimates. Palaeogeography, Palaeoclimatology, Palaeoecology 52:3559.Google Scholar
Enright, N. J., and Hill, R. S. 1995. Ecology of the southern conifers. Melbourne University Press, Melbourne.Google Scholar
Falcon-Lang, H. J. 2000a. The relationship between leaf longevity and growth ring markedness in modern conifer woods and its implications for palaeoclimatic studies. Palaeogeography, Palaeoclimatology, Palaeoecology 160:317328.CrossRefGoogle Scholar
Falcon-Lang, H. J. 2000b. A method to distinguish between woods produced by evergreen and deciduous coniferopsids on the basis of growth ring anatomy: a new palaeoecological tool. Palaeontology 43:785793.CrossRefGoogle Scholar
Felix, J. 1882. Studien über fossile Hölzer. Bruck von Pöschel und Trepte, Leipzig.Google Scholar
Frakes, L. A., Francis, J. E., and Syktus, J. I. 1992. Climate modes of the Phanerozoic: the history of the Earth's climate over the past 600 million years. Cambridge University Press, Cambridge.Google Scholar
Francis, J. E. 1984. The seasonal environment of the Purbeck (Upper Jurassic) fossil forests. Palaeogeography, Palaeoclimatology, Palaeoecology 48:285307.Google Scholar
Francis, J. E. 1986. Growth rings in Cretaceous and Tertiary wood from Antarctica and their palaeoclimatic implications. Palaeontology 29:665684.Google Scholar
Francis, J. E., Woolfe, K. J., Arnott, M. J., and Barrett, P. J. 1994. Permian climates of the southern margins of Pangea: evidence from fossil wood in Antarctica. Canadian Society of Petroleum Geologists Memoir 17:275282.Google Scholar
Fritts, H. C. 1976. Tree rings and climate. Academic Press, London.Google Scholar
Hallam, A. 1998. The determination of Jurassic environments using palaeoecological methods. Bulletin de la Société Géologique de France 169:681687.Google Scholar
Herman, A. B., and Spicer, R. A. 1996. Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature 380:330333.Google Scholar
Jacoby, G. C. 1989. Overview of tree-ring analysis in tropical regions. International Association of Wood Anatomists Bulletin 10:99108.Google Scholar
Keller, A. M., and Hendrix, M. S. 1997. Palaeoclimatologic analysis of a Late Jurassic petrified forest, Southeastern Mongolia. Palaios 12:282291.Google Scholar
Kort, I. de, and Baas, P. 1997. Ringwidth patterns of Douglas Fir in relation to crown vitality and age. International Association of Wood Anatomists Journal 18:5367.Google Scholar
Krassilov, V. A. 1994. Reflections on the relationship between phytogeography, climate and evolution. Review of Palaeobotany and Palynology 83:131136.CrossRefGoogle Scholar
Morgans, H. S. 1999. Lower and Middle Jurassic woods of the Cleveland Basin (North Yorkshire), England. Palaeontology 42:303328.Google Scholar
Morgans, H. S., Hesselbo, S. P., and Spicer, R. A. 1999. The seasonal climate of the Early-Middle Jurassic, Cleveland Basin, England. Palaios 14:261272.Google Scholar
Parrish, J. T., and Spicer, R. A. 1988. Middle Cretaceous wood from the Nanushuk Group, Central North Slope, Alaska. Palaeontology 31:1934.Google Scholar
Pfefferkorn, H. W. 1995. We are all temperate climate chauvinists. Palaios 10(5), 3 pp. in online section.Google Scholar
Philippe, M. 1993. Nomenclature générique des trachéidoxyles mésozoïques à champs araucarioïdes. Taxon 42:7480.Google Scholar
Philippe, M. 1995. Bois fossiles du Jurassique de Franche-Comté (NE-France): systématique et biogéographie. Palaeontographica, Abteilung B 236:45103.Google Scholar
Philippe, M., and Thévenard, F. 1996. Repartition and palaeoecology of the Mesozoic wood genus Xenoxylon: palaeoclimatological implications for the Jurassic of Western Europe. Review of Palaeobotany and Palynology 91:353370.Google Scholar
Philippe, M., Barale, G., Gomez, B., Guignard, G., and Thévenard, F. 1999a. Paléodiversifications de flores terrestres phanérozoïques. Géobios 32:325331.CrossRefGoogle Scholar
Philippe, M., Zijlstra, G., and Barbacka, M. 1999b. Greguss formgenera of homoxylous fossil woods: a taxonomical and nomenclatural review. Taxon 48:667676.Google Scholar
Ricou, L. E. 1994. Tethys reconstructed: plates, continental fragments and their boundaries since 260 m.y. from Central America to South Eastern Asia. Geodinamica Acta 7:169218.CrossRefGoogle Scholar
Savidge, R. A. 1996. Xylogenesis, genetic and environmental regulation—a review. International Association of Wood Anatomists Journal 17:269310.Google Scholar
Schultze-Dewitz, G., Götz, H., and Süß, H. 1988. The Ginkgo tree and its wood. Drevársky Vyzkum 33:4361.Google Scholar
Seitz, R. A., and Kanninen, M. 1989. Tree ring analysis of Araucaria angustifolia in southern Brazil: preliminary results. International Association of Wood Anatomists Bulletin 10:170174.Google Scholar
Smith, A. G., Smith, D. G., and Funnell, B. M. 1994. Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press, Cambridge.Google Scholar
Spicer, R. A., and Parrish, J. T. 1990. Latest Cretaceous woods of the Central North Slope, Alaska. Palaeontology 33:225242.Google Scholar
Süß, H. 1988. Zur Problematik des Nachweises fossiler Gingko-Holzreste. Zeitschrift für Geologischen Wissenchaften 16:335336.Google Scholar
Tomlinson, P. B., and Longman, K. A. 1981. Growth phenology of tropical trees in relation to cambial activity. In Borman, F. H. and Berlyn, G. P., eds. Age and growth rate of tropical trees. Yale University School of Environmental Studies Bulletin 94:719.Google Scholar
Torres, T., Roman, A., Deza, A., and Rivera, C. 1984. Anatomía, mineralogía y termoluminiscencia de madera fósil de la Isla Rey Jorge, Islas Shetland del Sur. IIIo Congresso Latinoamericano de Palaeontología, Mexico, Abstracts, pp. 556574.Google Scholar
Vakhrameev, V. A. 1991. Jurassic and Cretaceous floras and climates of the Earth. Cambridge University Press, Cambridge.Google Scholar
Valdes, P. 1993. Atmospheric general circulation models of the Jurassic. Philosophical Transactions of the Royal Society of London B 341:317326.Google Scholar
Wimmer, R., and Grabner, M. 2000. A comparison of tree-ring features in Picea abies as correlated to climate. International Association of Wood Anatomists Journal 21:403416.Google Scholar
Worbes, M. 1995. How to measure growth dynamics in tropical trees—a review. International Association of Wood Anatomists Journal 16:337351.Google Scholar
Worbes, M. 1999. Annual growth rings, rainfall dependent growth and long-term growth patterns of tropical trees from Caparo Forest Reserve in Venezuela. Journal of Ecology 87:391403.Google Scholar
Yadav, R. R., and Bhattacharyya, A. 1994. Growth ring features in Sahnioxylon from Rajmahal Hills and their climatic implications. Current Science 67:739740.Google Scholar