Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-13T02:44:11.063Z Has data issue: false hasContentIssue false

Phylogenetic corrections for morphological disparity analysis: new methodology and case studies

Published online by Cambridge University Press:  08 April 2016

Stephen L. Brusatte
Affiliation:
Division of Paleontology, American Museum of Natural History, New York, New York 10024 Department of Earth and Environmental Sciences, Columbia University, New York, New York. E-mail: sbrusatte@amnh.org, hyi@amnh.org, norell@amnh.org
Shaena Montanari
Affiliation:
Division of Paleontology, American Museum of Natural History, New York, New York 10024. E-mail: smontanari@amnh.org
Hong-yu Yi
Affiliation:
Division of Paleontology, American Museum of Natural History, New York, New York 10024 Department of Earth and Environmental Sciences, Columbia University, New York, New York. E-mail: sbrusatte@amnh.org, hyi@amnh.org, norell@amnh.org
Mark A. Norell
Affiliation:
Division of Paleontology, American Museum of Natural History, New York, New York 10024 Department of Earth and Environmental Sciences, Columbia University, New York, New York. E-mail: sbrusatte@amnh.org, hyi@amnh.org, norell@amnh.org

Abstract

Taxonomic diversity and morphological disparity are different measures of biodiversity that together can describe large-scale evolutionary patterns. Diversity measures are often corrected by extending lineages back in time or adding additional taxa necessitated by a phylogeny, but disparity analyses focus on observed taxa only. This is problematic because some morphologies required by phylogeny are not included, some of which may help fill poorly sampled time bins. Moreover the taxic nature of disparity analyses makes it difficult to compare disparity measures with phylogenetically corrected diversity or morphological evolutionary rate curves. We present a general method for using phylogeny to correct measures of disparity, by including reconstructed ancestors in the disparity analysis. We apply this method to discrete character data sets focusing on Triassic archosaurs, Cenozoic carnivoramorph mammals, and Cretaceous-Cenozoic euarchontogliran mammals. Phylogenetic corrections do not simply mirror the taxic disparity patterns, but affect the three analyses in heterogeneous ways. Adding reconstructed ancestors can inflate morphospace, and the amount and direction of expansion differs depending on the taxonomic group in question. In some cases phylogenetic corrections give a temporal disparity curve indistinguishable from the taxic trend, but in other cases disparity is elevated in earlier time intervals relative to later bins, due to the extension of unsampled morphologies further back in time. The phylogenetic disparity curve for archosaurs differs little from the taxic curve, supporting a previously documented pattern of decoupled disparity and rates of morphological change in dinosaurs and their early contemporaries. Although phylogenetic corrections should not be used blindly, they are helpful when studying clades with major unsampled gaps in their fossil records.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, D. C., Berns, C. M., Kozak, K. H., and Wiens, J. J. 2009. Are rates of species diversification correlated with rates of morphological evolution? Proceedings of the Royal Society of London B 276:27292738.Google ScholarPubMed
Alroy, J. 1999. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Systematic Biology 48:107118.Google Scholar
Alroy, J., et al. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.CrossRefGoogle ScholarPubMed
Anderson, P. S. L. 2008. Shape variation between arthrodire morphotypes indicates possible feeding niches. Journal of Vertebrate Paleontology 28:961969.CrossRefGoogle Scholar
Asher, R. J., Meng, J., Wible, J. R., McKenna, M. C., Rougier, G. W., Dashzeveg, D., and Novacek, M. J. 2005. Stem Lagomorpha and the antiquity of Glires. Science 307:10911094.Google Scholar
Barrett, P. M., McGowan, A. J., and Page, V. 2009. Dinosaur diversity and the rock record. Proceedings of the Royal Society of London B 276:26672674.Google ScholarPubMed
Benton, M. J. 2005. Vertebrate palaeontology, 3d ed. Blackwell, Oxford.Google Scholar
Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L., and Purvis, A. 2007. The delayed rise of present-day mammals. Nature 446:507512.Google Scholar
Brusatte, S. L. 2007. The higher-level phylogeny of Archosauria (Tetrapoda: Diapsida). . University of Bristol, Bristol, U.K. Google Scholar
Brusatte, S. L., Benton, M. J., Ruta, M., and Lloyd, G. T. 2008a. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321:14851488.CrossRefGoogle ScholarPubMed
Brusatte, S. L., 2008b. The first 50 myr of dinosaur evolution: macroevolutionary pattern and morphological disparity. Biology Letters 4:733736.Google Scholar
Brusatte, S. L., Benton, M. J., Desojo, J., and Langer, M. C. 2010a. The higher-level phylogeny of Archosauria (Tetrapoda: Diapsida). Journal of Systematic Palaeontology 8:347.Google Scholar
Brusatte, S. L., Nesbitt, S. J., Irmis, R. B., Butler, R. J., Benton, M. J., and Norell, M. A. 2010b. The origin and early radiation of dinosaurs. Earth-Science Reviews 101:68100.Google Scholar
Ciampaglio, C. N., Kemp, M., and McShea, D. W. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27:695715.Google Scholar
Collar, D. C., O'Meara, B. C., Wainwright, P. C., and Near, T. J. 2009. Piscivory limits diversification of feeding morphology in centrarchid fishes. Evolution 63:15571573.CrossRefGoogle ScholarPubMed
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115 in Schopf, T. J. M., ed. Models in paleobiology. Freeman, Cooper, San Francisco. Google Scholar
Erwin, D. H. 2007. Disparity: morphological pattern and developmental complexity. Palaeontology 50:5773.Google Scholar
Farris, J. 1970. Methods for computing Wagner trees. Systematic Zoology 19:8392.CrossRefGoogle Scholar
Fisher, D. C. 1982. Phylogenetic and macroevolutionary patterns within the Xiphosurida. Proceedings of the Third North American Paleontological Convention 1:175180.Google Scholar
Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.Google Scholar
Foote, M. 1996. Models of morphological diversification. Pp. 6286 in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary Paleobiology. University of Chicago Press, Chicago.Google Scholar
Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology and Systematics 28:129152.Google Scholar
Friedman, M. 2009. Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction. Proceedings of the National Academy of Sciences USA 106:52185223.Google Scholar
Goloboff, P. A., Farris, J. S., and Nixon, K. C. 2003. T.N.T.: tree analysis using new technology, Version 1.0. www.zmuc.dk/public/phylogeny Google Scholar
Gould, S. J. 1991. The disparity of the Burgess shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411423.CrossRefGoogle Scholar
Gould, S. J. 2002. The structure of evolutionary theory. Harvard University Press, Cambridge.Google Scholar
Irmis, R., and Mundil, R. 2008. New age constraints from the Chinle Formation revise global comparisons of Late Triassic vertebrate assemblages. Journal of Vertebrate Paleontology 28(Suppl. to No. 3):95A.Google Scholar
Lane, A., Janis, C. M., and Sepkoski, J. J. Jr. 2005. Estimating paleodiversities: a test of the taxic and phylogenetic methods. Paleobiology 31:2134.2.0.CO;2>CrossRefGoogle Scholar
Langer, M. C., Ezcurra, M. D., Bittencourt, J. S., and Novas, F. E. 2010. The origin and early evolution of dinosaurs. Biological Reviews 85:55110.Google Scholar
Lloyd, G. T., Davis, K. E., Pisani, D., Tarver, J. E., Ruta, M., Sakamoto, M., Hone, D. W. E., Jennings, R., and Benton, M. J. 2008. Dinosaurs and the Cretaceous Terrestrial Revolution. Proceedings of the Royal Society, Series B 275:24832490.Google Scholar
Lupia, R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology 25:128.Google Scholar
Maddison, W. P. 1991. Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Zoology 40:304314.Google Scholar
Maddison, W. P., and Maddison, D. R. 2009. Mesquite: a modular system for evolutionary analysis, Version 2.72. http://mesquiteproject.org Google Scholar
McGhee, G. R. Jr. 1999. Theoretical morphology. The concept and its applications. Columbia University Press, New York.Google Scholar
Nesbitt, S. J. 2007. The anatomy of Effigia okeeffeae (Archosauria, Suchia), theropod- like convergence, and the distribution of related taxa. Bulletin of the American Museum of Natural History 302:184.CrossRefGoogle Scholar
Norell, M. A. 1992. Taxic origin and temporal diversity: the effect of phylogeny. Pp. 88118 in Novacek, M. J. and Wheeler, Q. D., eds. Extinction and phylogeny. Columbia University Press, New York.Google Scholar
Norell, M. A. 1993. Tree-based approaches to understanding history: comments on ranks, rules, and the quality of the fossil record. American Journal of Science 293A:407417.CrossRefGoogle Scholar
Norell, M. A., and Novacek, M. J. 1992. The fossil record and evolution: comparing cladistic and paleontologic evidence for vertebrate history. Science 255:16901693.CrossRefGoogle ScholarPubMed
O'Meara, B. C., Ane, C., Sanderson, M. J., and Wainwright, P. C. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922933.Google Scholar
Paul, C. R. C. 1982. The adequacy of the fossil record. Systematics Association Special Volume 21:75117.Google Scholar
Pol, D., and Norell, M. A. 2006. Uncertainty in the age of fossils and the stratigraphic fit to phylogenies. Systematic Biology 55:512521.CrossRefGoogle ScholarPubMed
Raup, D. M. 1972. Taxonomic diversity during the Phanaerozoic. Science 231:10651071.CrossRefGoogle Scholar
Ruta, M., Wagner, P. J., and Coates, M. I. 2006. Evolutionary patterns in early tetrapods. I. Rapid initial diversification followed by decrease in rates of character change. Proceedings of the Royal Society of London B 273:21072111.Google Scholar
Ricklefs, R. E. 2006. Time, species, and the generation of trait variance in clades. Systematic Biology 55:151159.Google Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.Google Scholar
Sepkoski, J. J., and Kendrick, D. C. 1993. Numerical experiments with model monophyletic and paraphyletic taxa. Paleobiology 19:168184.Google Scholar
Sidlauskas, B. 2007. Testing for unequal rates of morphological diversification in the absence of a detailed phylogeny: a case study from characiform fishes. Evolution 61:299316.Google Scholar
Sidlauskas, B. 2008. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62:31353156.CrossRefGoogle ScholarPubMed
Simpson, G. G. 1944. Tempo and mode in evolution. Columbia University Press, New York.Google Scholar
Smith, A. B. 1994. Systematics and the fossil record: documenting evolutionary patterns. Blackwell Scientific, Oxford.Google Scholar
Springer, M. S., Murphy, W. J., Elzirik, E., and O'Brien, S. J. 2003. Placental mammal diversification and the Cretaceous-Tertiary boundary. Proceedings of the National Academy of Sciences USA 100:10561061.Google Scholar
Lofgren, A. Stockmeyer, Plotnick, R. E., and Wagner, P. J. 2003. Morphological diversity of Carboniferous arthropods and insights on disparity patterns through the Phanerozoic. Paleobiology 29:349368.Google Scholar
Swofford, D. L. 2003. PAUP. Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4. Sinauer, Sunderland, Mass. Google Scholar
Wagner, P. J. 1995. Stratigraphic tests of cladistic hypotheses. Paleobiology 21:153178.Google Scholar
Wagner, P. J. 1997. Patterns of morphological diversification among the Rostroconchia. Paleobiology 23:115145.Google Scholar
Wagner, P. J. 2000a. Phylogenetic analyses and the fossil record: tests and inferences, hypotheses and models. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective Paleobiology 26(Suppl. to No. 4):341371.Google Scholar
Wagner, P. J. 2000b. The quality of the fossil record and the accuracy of phylogenetic inferences about sampling and diversity. Systematic Biology 49:6586.Google Scholar
Wesley-Hunt, G. D. 2005. The morphological diversification of carnivores in North America. Paleobiology 31:3555.Google Scholar
Wesley-Hunt, G. D., and Flynn, J. J. 2005. Phylogeny of the Carnivora: Basal relationships among the Carnivoramorphans, and assessment of the position of ‘Miacoidea’ relative to Carnivora. Journal of Systematic Palaeontology 3:128.Google Scholar
Wible, J. R., Rougier, G. W., Novacek, M. J., and Asher, R. J. 2007. Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature 447:10031006.Google Scholar
Wills, M. A. 1998. Crustacean disparity through the Phanerozoic: comparing morphological and stratigraphic data. Biological Journal of the Linnean Society 65:455500.CrossRefGoogle Scholar
Wills, M. A., Briggs, D. E. G., and Fortey, R. A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology 20:93131.Google Scholar
Young, M. T., Brusatte, S. L., Ruta, M., and Andrade, M. B. 2010. The evolution of Metriorhynchoidea (Mesoeucrocodylia: Thalattosuchia): an integrated approach using geometric morphometrics, analysis of disparity, and biomechanics. Zoological Journal of the Linnean Society 158:801859.Google Scholar