Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T13:50:06.654Z Has data issue: false hasContentIssue false

Land to sea transitions in vertebrates: the dynamics of colonization

Published online by Cambridge University Press:  05 March 2018

Geerat J. Vermeij
Affiliation:
Department of Earth and Planetary Sciences, University of California–Davis, Davis, California 95616, U.S.A. E-mail: gjvermeij@ucdavis.edu
Ryosuke Motani
Affiliation:
Department of Earth and Planetary Sciences, University of California–Davis, Davis, California 95616, U.S.A. E-mail: gjvermeij@ucdavis.edu

Abstract

Vertebrates with terrestrial or freshwater ancestors colonized the sea from the Early Triassic onward and became competitively dominant members of many marine ecosystems throughout the Mesozoic and Cenozoic eras. The circumstances that led to initial marine colonization have, however, received little attention. One hypothesis is that mass extinction associated with ecosystem collapse provided opportunities for clades of amphibians, reptiles, birds, and mammals to enter marine environments. Another is that competitive pressures in donor ecosystems on land and in freshwater, coupled with abundant food in nearshore marine habitats, favored marine colonization. Here we test these hypotheses by compiling all known secondarily marine amniote clades and their times of colonization. Marine amniotes are defined as animals whose diet consists primarily of marine organisms and whose locomotion includes swimming, diving, or wading in salt water. We compared the number of clades entering during recovery phases from mass extinctions with the rate of entry of clades during nonrecovery intervals of the Mesozoic and Cenozoic. We conservatively identify 69 marine colonizations by amniotes. The only recovery interval for which prior mass extinction could have been a trigger for marine entry is the Early Triassic, when four clades colonized the sea over 7 Myr, significantly above the rates at which clades entered during other intervals. High nearshore productivity was a greater enticement to colonization than was a low diversity of potential marine competitors or predators in nearshore environments of a highly competitive terrestrial or freshwater donor biota. Rates of marine entry increased during the Cenozoic, in part because of rising productivity and in part thanks to the participation of warm-blooded birds and mammals, which broadened the range of thermal environments in which initial colonization of the sea became possible.

Type
Articles
Copyright
Copyright © 2018 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alfaro, M. E., Karns, D. R., Voris, R. K., Brock, C. D., and Stuart, B. L.. 2008. Phylogeny, evolutionary history, and biogeography of Oriental Australian rear-fanged water snakes (Colubroidea, Homalopsidae) inferred from mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution 46:576593.CrossRefGoogle ScholarPubMed
Amson, E., de Muizon, C., and Gaudin, T. J.. 2017. A reappraisal of the phylogeny of the Megatheria (Mammalia: Tardigrada), with an emphasis on the relationships of the Thalassocninae, the marine sloths. Zoological Journal of the Linnean Society 179:217236.Google Scholar
Anquetin, J. 2012. Reassessment of the phylogenetic interrelationships of basal turtles (Testudinata). Journal of Systematic Palaeontology 10:345.CrossRefGoogle Scholar
Anquetin, J., Püntener, C., and Billon-Bruyat, J.-P.. 2015. Portlandemys gracilis n. sp., a new coastal marine turtle from the Late Jurassic of Porrentruy (Switzerland) and a reconsideration of plesiochelyid anatomy. PLoS ONE 10:e0129193.Google Scholar
Arnason, U., Gullberg, A., Janke, A., Kullberg, M., Lehman, N., Petrov, Y. A., and Váinolá, R.. 2006. Pinniped phylogeny and a new hypothesis for their origin and dispersal. Molecular Phylogenetics and Evolution 41:345354.CrossRefGoogle Scholar
Bajpai, S., and Gingerich, P. D.. 1998. A new Eocene archaeocete from India and the time of origin of Cetacea. Proceedings of the National Academy of Sciences of the USA 95:1546415468.Google Scholar
Baker, A. J., Pereira, S. L., and Paton, T. A.. 2007. Phylogenetic relationships and divergence times of Charadriiformes genera: multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds. Biology Letters 3:205209.Google Scholar
Baron, M.G., Norman, D. B., and Barrett, P. M.. 2017. A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature 543:501506.CrossRefGoogle ScholarPubMed
Beatty, B. L. 2009. New material of Cornwallius sookensis (Mammalia: Desmostylia) from the Yaquina Formation of Oregon. Journal of Vertebrate Paleontology 29:894909.CrossRefGoogle Scholar
Bell, A., and Chiappe, L. M.. 2015. Identification of a new hesperornithiform from the Cretaceous Niobrara Chalk and implications for ecologic diversity among early diving birds. PLoS ONE 10:e014l690.CrossRefGoogle ScholarPubMed
Bengtson, S. A., and Svensson, B.. 1968. Feeding habits of Calidris alpina L. and C. minuta Leisl. (Aves) in relation to the distribution of marine invertebrates. Oikos 19:152157.Google Scholar
Benson, R. B. J., Fitzgerald, E. M. G., Rich, T. H., and Vickers-Rich, P.. 2013. Large freshwater plesiosaurian from the Cretaceous (Aptian) of Australia. Alcheringa 37:456461.CrossRefGoogle Scholar
Benson, R.B.J., Frigot, R. A., Goswami, A., Andres, B., and Butler, R. J.. 2014. Competition and constraint drove Cope’s rule in the evolution of giant flying reptiles. Nature Communications 5:3567.Google Scholar
Berta, A., Ray, C. E., and Wyss, A. R.. 1989. Skeleton of the oldest known pinniped. Enalioarctos nealsi. Science 244:6062.Google Scholar
Bever, G. S., and Norell, M. A.. 2017. A new rhynchocephalian (Reptilia: Lepidosauria) from the Late Jurassic of Solnhofen (Germany) and the origin of the marine Pleurosauridae. Royal Society Open Science 10:017570.Google Scholar
Blood, B. R., and Clark, M. K.. 1998. Myotis vivesi . Mammalian Species 588:15.Google Scholar
Brochu, C. A. 2004. A new Late Cretaceous gavialoid crocodylian from eastern North America and the phylogenetic relationships of thoracosaurs. Journal of Vertebrate Paleontology 24:630634.Google Scholar
Brodkorb, P. 1955. Avifauna of the Bone Valley Formation. Florida Geological Survey Report of Investigations 14:157.Google Scholar
Bulgarella, M., Sorenson, M. D., Peters, J. L., Wilson, R. E., and McCracken, K. G.. 2010. Phylogenetic relationships of Amazonetta, Speculanas, Lophonetta, and Tachyeres: four morphologically divergent duck genera endemic to South America. Journal of Avian Biology 41:186199.CrossRefGoogle Scholar
Bulgarella, M., Kopuchian, C., Di Giacomo, A. S., and Matus, R.. 2014. Molecular phylogeny of the South American sheldgeese with implications for conservation of Falkland Islands (Malvinas) and continental populations of the ruddy-headed goose Chloephaga rubidiceps and upland goose C. picta . Bird Conservation International 24:5971.Google Scholar
Burton, P. J. K. 1974. Feeding and feeding apparatus in waders: a study of anatomy and adaptations in the Charadrii. British Museum of Natural History, London.Google Scholar
Cadée, G. C. 2006. Gastropod shells cracked by hooded crows by dropping. Basteria Supplement 3:5155.Google Scholar
Cadée, G. C. 2011. Hydrobia as “Jonah in the whale”: shell repair after passing through the digestive tract of shelducks alive. Palaios 26:245249.Google Scholar
Cadena, E. 2015. The first South American sandonid turtle from the Lower Cretaceous of Colombia. PeerJ 3:e1431.CrossRefGoogle Scholar
Cadena, E. A., and Parham, J. F.. 2015. Oldest known marine turtle? A new protostegid from the Lower Cretaceous of Colombia. PaleoBios 32:142.Google Scholar
Cahill, J. A., Green, R. E., Fulton, T. L., Stiller, M., Jay, F., Ovsyankov, N., Salamzade, R., John, J. St., Stirling, I., Slatkin, M., and Shapiro, B.. 2013. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genetics 9:e1003345.Google Scholar
Caldwell, M. P., and Palci, A.. 2007. A new basal mosasauroid from the Cenomanian (U. Cretaceous) of Slovenia with a review of mosasauroid phylogeny and evolution. Journal of Vertebrate Paleontology 27:863880.Google Scholar
Carroll, R. L. 1985. Evolutionary constraints in aquatic diapsid reptiles. Special Papers in. Palaeontology 33:145155.Google Scholar
Chandler, R. M., and Parmley, D.. 2003. The earliest North American record of auk (Aves: Alcidae) from the Late Eocene of central Georgia. Oriole 68:79.Google Scholar
Cheng, L., Chen, X., Zeng, X., and Cai, Y.. 2012. A new eosauropterygian (Diapsida: Sauropterygia) from the Middle Triassic of Luoping, Yunnan Province. Journal of Earth Science 23:3340.Google Scholar
Clarke, J. 2004. Morphology, phylogenetic taxonomy, and systematics of Icthyornis and Apatornis (Avaialae: Ornithurae). Bulletin of the Peabody Museum of Natural History 286:1179.Google Scholar
Clegg, M. 1972. Carrion crows feeding on marine molluscs and taking fish. Bird Study 19:239250.Google Scholar
Conroy, J. W. H., and Jenkins, D.. 1986. Ecology of otters in northern Scotland. VI. Feeding times and hunting success of otters (Lutra lutra) at Dinnet Lochs, Aberdeenshire and in Yell Sound, Shetland. Journal of Zoology A 209:341346.Google Scholar
Crawford, N. G., Parham, J. F., Sellas, A. B., Faircloth, B. C., Glenn, T. C., Papenfuss, T. J., Henderson, J. B., Hansen, M. H., and Simison, W. B.. 2015. A phylogenomic analysis of turtles. Molecular Phylogenetics and Evolution 83:250257.Google Scholar
Davenport, J., Spikes, M., Thornton, S. M., and Kelly, B. O.. 1992. Crab-eating in the diamond-backed terrapin Malaclemys terrapin: dealing with dangerous prey. Journal of the Marine Biological Association of the United Kingdom 72:835848.Google Scholar
De Lisle, H. F. 2007. Observations on Varanus s. saltator in North Sulawesi. Biawak 1:5966.Google Scholar
De Pietri, V. L., and Mayr, G.. 2012. An assessment of the diversity of Early Miocene Scolopacidae (Aves: Charadriiformes) from Saint-Gérand-le-Puy (Allier, France). Palaeontology 55:11771196.Google Scholar
De Pietri, V. L., Costeur, L., Güntert, M., and Mayr, G.. 2011. A revision of the Lari (Aves, Charadriiformes) from the Early Miocene of Saint-Gérand-le-Puy (Allier, France). Journal of Vertebrate Paleontology 31:812828.Google Scholar
De Pietri, V. L., Scofield, R. P., Hand, S. J., Tennyson, A. J. D., and Worthy, T. H.. 2016a. Sheathbill-like birds (Charadriiformes: Chionoidea) from the Oligocene and Miocene of Australasia. Journal of the Royal Society of New Zealand 46:181199.Google Scholar
De Pietri, V. L., Scofield, R. P., Zelenkov, N., Boles, W. E., and Worthy, T. H.. 2016b. The unexpected survival of an ancient lineage of anseriform birds into the Neogene of Australia: the youngest record of Presbyornithidae. Royal Society Open Science 3:2015.0635.Google Scholar
Domning, D. P. 2001. The earliest known fully quadrupedal sirenian. Nature 413:625627.Google Scholar
Dunson, W. A., and Mazzotti, F. J.. 1989. Salinity as a limiting factor in the distribution of reptiles in Florida Bay: a theory of the estuarine origin of marine snakes and turtles. Bulletin of Marine Science 44:229244.Google Scholar
Dunson, W. A., and Travis, J.. 1994. Patterns in the evolution of physiological specialization in salt-marsh animals. Estuaries 17:102110.Google Scholar
Dyke, G. J., and Walker, C. A.. 2005. New records of fossil birds from the Pliocene of Kallo, Belgium. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 4:233246.Google Scholar
Edington, J. M., Morgan, P. J., and Morgan, R. A.. 1973. Feeding patterns of wading birds on the Gann Flat and River estuary at Dale. Field Studies 3:783800.Google Scholar
Ehret, D. J., and Atkinson, B. K.. 2012. The fossil record of the diamond-backed terrapin, Malaclemys terrapin (Testudines: Emydidae). Journal of Herpetology 46:351355.Google Scholar
Elliott, A. B., and Karunakaran, L. K.. 1974. Diet of Rana cancrivora in fresh water and brackish water environments. Journal of Zoology London 174:203215.Google Scholar
Elner, R.W., Beninger, P. G., Jackson, D. L., and Potter, T. M.. 2005. Evidence of a new feeding mode in western sandpiper (Calidris mauri) and dunlin (Calidris alpina) based on bill and tongue morphology and ultrastructure. Marine Biology 146:12231234.Google Scholar
Elzanowski, A., and Zelenkov, N. V.. 2015. A primitive heron (Aves: Ardeidae) from the Miocene of central Asia. Journal of Ornithology 156:837846.Google Scholar
Emslie, S. D. 1995a. A catastrophic death assemblage of a new species of cormorant and other seabirds from the Late Pliocene of Florida. Journal of Vertebrate Paleontology 15:313330.Google Scholar
Emslie, S. D. 1995b. An Early Irvingtonian avifauna from Leisey Shell Pit, Florida. Bulletin of the Florida Museum of Natural History 37:299344.Google Scholar
Emslie, S. D., and Correa, C. G.. 2003. A new species of penguin (Spheniscidae: Spheniscus) and other birds from the Late Pliocene of Chile. Proceedings of the Biological Society of Washington 116:308316.Google Scholar
Ericson, P. G. P., Anderson, C. L., Britton, T., Elzanowski, A., Johansson, U. S., Källersjö, M., Ohlson, J. I., Parsons, T. J., Zuccon, D., and Mayr, G.. 2006. Diversification of Neoaves: integration of molecular sequence data and fossils. Biology Letters 2:543547.Google Scholar
Evans, P. R., Herdson, D. M., Knights, P. J., and Pienkowski, M.W.. 1979. Short-term effects of reclamation of part of Seal Sands, Teesmouth, on wintering waders and shelduck. I. Shorebird diets, invertebrate densities, and the impact of predation on the invertebrates. Oecologia 41:183206.Google Scholar
Fain, M. G., and Houde, P.. 2007. Multilocus perspectives on the morphology and phylogeny of the order Charadriiformes (Aves). BMC Evolutionary Biology 7:35.CrossRefGoogle Scholar
Fernandes, M. E. B. 1991. Tool use and predation of oysters (Crassostrea rhizophorae) by the tufted capuchin, Cebus apella apella in brackish water mangrove swamp. Primates 32:529531.Google Scholar
Ferreira, G. S., Rincón, A. D., Solórzano, A., and Langer, M. C.. 2015. The last marine pelomedusids (Testudines: P1eurodira): a new species of Bairdemys and the paleoecology of Stereogenyina . PeerJ 3:e1063.Google Scholar
Fox-Dobbs, K., Stidham, T. A., Bowen, G. J., Emslie, S. D., and Koch, P. L.. 2008. Dietary controls on extinction versus survival among avian megafauna in the Late Pleistocene. Geology 34:685688.Google Scholar
Fulton, P. J. L., Letts, B., and Shapiro, B.. 2012. Multiple losses of flight and recent speciation in steamer ducks. Proceedings of the Royal Society of London B 279:23392346.Google Scholar
Fulton, T. L., and Strombeck, C.. 2010. Multiple markers and multiple individuals refine true seal phylogeny and bring molecular and morphology back in line. Proceedings of the Royal Society of London B 277:10651070.Google Scholar
Gaffney, E. S., Tong, H., and Meylan, P. A.. 2006. Evolution of the side-necked turtles: the families Bothremydidae, Euraxemyidae, and Araripemyidae. Bulletin of the American Museum of Natural History 300:1698.Google Scholar
Galicia, M. P., Thiemann, G. W., Dyck, M. G., and Ferguson, S. H.. 2015. Characterization of polar bear (Ursus maritimus) diets in the Canadian high Arctic. Polar Biology 38:19831992.Google Scholar
Gasparini, Z., Vignaud, P., and Chong, G. B.. 2000. The Jurassic Thalattosuchia (Crocodyliformes) of Chile: a paleobiogeographic approach. Bulletin de la Société Géologique de France 171:657664.Google Scholar
Gentry, A. D. 2017. New material of the Late Cretaceous marine turtle Ctenochelys acris Zangerl, 1953 and a phylogenetic reassessment of the “toxochelyid”-grade taxa. Journal of Systematic Palaeontology 15:675696.Google Scholar
Gibb, G. C., Kennedy, M., and Penny, D.. 2013. Beyond phylogeny: pelecaniform and ciconiiform birds, and long-term niche stability. Molecular Phylogenetics and Evolution 68:229238.Google Scholar
Gibb, J. 1956. Food, feeding habits and territoriality of the rock pipit Anthus spinoletta . Ibis 98:506530.Google Scholar
Gonzalez, J., Duttmann, H., and Wink, M.. 2009. Phylogenetic relationships based on two mitochondrial genes and hybridization patterns in Anatidae. Journal of Zoology 279:310318.Google Scholar
Gordon, M. S., Schmidt-Nielsen, K., and Kelly, H. M.. 1961. Osmotic regulation in the crab-eating frog (Rana cancrivora). Journal of Experimental Biology 38:659678.Google Scholar
Gozzi, E., and Renesto, S.. 2003. A complete specimen of Mystriosuchus (Reptilia, Phytosauria) from the Norian (Late Triassic) of Lombardy (northern Italy). Rivista Italiana di Paleontologia e Stratigrafia 109:475498.Google Scholar
Grasby, S. E., Beauchamp, B., and Knies, J.. 2016. Early Triassic productivity crises delayed recovery from the world’s worst mass extinction. Geology 44:679682.Google Scholar
Griffiths, C. S., Barraclough, G. F., Groth, J. G., and Mertz, L. A.. 2007. Phylogeny, diversity, and classification of the Accipitridae based on DNA sequences of the RAG-1 exon. Journal of Avian Biology 38:587602.Google Scholar
Grigg, G. C., Beard, L. A., Moulton, T., Queiro Melo, M. T., and Taplin, L. E.. 1998. Osmoregulation in the broad-snouted caiman, Caiman latirostris, in estuarine habitats in southern Brazil. Journal of Comparative Physiology B 168:445452.Google Scholar
Gumert, M. D., and Malaivijitnond, S.. 2012. Marine prey processed with stone tools by Burmese long-tailed macaques (Macaca fascicularis aurea) in intertidal habitats. American Journal of Physical Anthropology 149:447457.Google Scholar
Gumert, M. D., Kluck, M., and Malaivijitnond, S.. 2009. The typical characteristics and usage patterns of stone axe and pounding hammers used by long-tailed macaques in the Andaman Sea region of Thailand. American Journal of Primatology 71:594608.Google Scholar
Gutstein, C. S., Cozzuol, M. A., and Pyenson, N. D.. 2014. The antiquity of riverine adaptations in Iniidae (Cetacea, Odontoceti) documented by a humerus from the Late Miocene Ituzaingó Formation, Argentina. Anatomical Record 297:10961102.Google Scholar
Hackett, S. J., Kimball, R. T., Reddy, S., Bowie, R. C. K., Braun, E. L., Braun, M. J., Chojnowski, J. L., Cox, W. A., Han, K.-L., Harshman, J., Huddleston, C. J, Marks, B. D., Miglia, K. J., Moore, W. S., Sheldon, F. H., Steadman, D.W., Witt, C. C., and Yuri, T.. 2008. A phylogenomic study of birds reveals their evolutionary history. Science 320:17631768.Google Scholar
Haque, N. M., and Vijayan, V.. 1993. Food habits of the fishing cat Felis viverrina in Keoladeo National Park, Bharatpur, Rajasthan. Journal of the Bombay Natural History Society 90:498500.Google Scholar
Hastings, A. K., Bloch, J. I., Jaramillo, C. A., Rincon, A. F., and MacFadden, B. J.. 2013. Systematics and biogeography of crocodylians from the Miocene of Panama. Journal of Vertebrate Paleontology 33:239263.Google Scholar
Hertel, F. 1995. Ecomorphological indicators of feeding behavior in Recent and fossil raptors. Auk 112:890903.Google Scholar
Houssaye, A., Rage, J.-C., Bardet, N., Vincent, P., Amaghzaz, M., and Messlouh, S.. 2013. New highlights about the enigmatic marine snake Palaeophis maghrebianus (Palaeophiidae; Palaeophiinae) from the Ypresian (Lower Eocene) phosphates of Morocco. Palaeontology 56:647661.Google Scholar
Houssaye, A., Tafforeau, P., de Muizon, C., and Gingerich, P. D.. 2015. Transition of Eocene whales from land to sea: evidence from bone microstructure. PLoS ONE 10:e0l18409.Google Scholar
Howard, H. 1963. Fossil birds from the Anza-Borrego Desert. Contributions in Science, Los Angeles County Museum of Natural History 73:333.Google Scholar
Hsiang, A. Z., Field, D. J., Webster, T. H., Behlke, A. D. B., Davis, M. B., Racicot, R. A., and Gauthier, J. A.. 2015. The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evolutionary Biology 15:87.Google Scholar
Jehl, J. R. Jr. 1975. Pluvianellus socialis: biology, ecology, and relationships of an enigmatic Patagonian shorebird. Transactions of the San Diego Society of Natural History 18:2574.Google Scholar
Jiang, D.-Y., Motani, R., Huang, J.-D., Tintori, A., Hu, Y.-C., Rieppel, O., Fraser, N. C., Ji, C., Kelley, N. P., Fu, W.-L., and Zhang, R.. 2016. A large aberrant stem ichthyosauriform indicating early rise and demise of ichthyosaurimorphs in the wake of the end-Permian extinction. Scientific Reports 6:26232.Google Scholar
Joyce, W. G. 2007. Phylogenetic relationships of Mesozoic turtles. Bulletin of the Peabody Museum of Natural History 48:3102.Google Scholar
Joyce, W. G. 2015. The origin of turtles: a paleontological perspective. Journal of Experimental Zoology 324B:181193.Google Scholar
Joyce, W. G. 2017. A review of the fossil record of basal Mesozoic turtles. Bulletin of the Peabody Museum of Natural History 58:65113.Google Scholar
Kelley, N. P., and Pyenson, N. D.. 2015. Evolutionary innovation and ecology in marine tetrapods from the Triassic to the Anthropocene. Science 348:AAA3736.Google Scholar
Kellner, A. W. A., and de Almeida Campos, D.. 2002. The function of the cranial crest and jaws of a unique pterosaur from the Early Cretaceous of Brazil. Science 297:389392.Google Scholar
Klein, R. G. 2016. Shellfish and human evolution. Journal of Anthropological Archaeology 44:198205.Google Scholar
Kocsis, L., Ősi, A., Vennemann, T., Trueman, C. N., and Palmer, M. R.. 2009. Geochemical study of vertebrate fossils from the Upper Cretaceous (Santonian) Csehbänya Formation (Hungary): evidence for a freshwater habitat of mosasaurs and pycnodont fish. Palaeogeography, Palaeoclimatology, Palaeoecology 280:532542.Google Scholar
Koretsky, A., and Domning, D. P.. 2014. One of the oldest seals (Carnivora, Phocidae) from the Old World. Journal of Vertebrate Paleontology 34:224229.Google Scholar
Kumar, A. B., Sanders, K. L., George, S., and Murphy, J. C.. 2012. The status of Eurostus dussumierii and Hypsirhina chinensis (Reptilia, Squamata, Serpentes): with comments on the origin of salt tolerance in homalopsid snakes. Systematics and Biodiversity 10:479489.Google Scholar
Kurochkin, E. N., Dyke, G. J., and Karhu, A. A.. 2002. A new presbyornithid bird (Aves, Anseriformes) from the Late Cretaceous of southern Mongolia. American Museum Novitates 3386:111.Google Scholar
Lambert, W. D. 1997. The osteology and paleoecology of the giant otter Enhydritherium terraenovae . Journal of Vertebrate Paleontology 27:738749.Google Scholar
Li, C., Rieppel, O., and LaBarbera, M. A.. 2004. A Triassic aquatic protorosaur with an extremely long neck. Science 305:1931.Google Scholar
Li, C., Wu, X., Cheng, Y., Sato, T., and Wang, L.. 2006. An unusual archosaurian from the Triassic of China. Naturwissenschaften 93:200206.Google Scholar
Li, C., Wu, X., Rieppel, O., Wang, L.-T., and Zhao, L.-J.. 2008. An ancestral turtle from the Late Triassic of southwestern China. Nature 456:497501.Google Scholar
Li, C., Wu, X.-C., Zhao, L.-J., Sato, T., and Wang, L.-T.. 2012. A new archosaur (Diapsida: Archosauriformes) from the marine Triassic of China. Journal of Vertebrate Paleontology 32:10641081.Google Scholar
Liedigk, R., Kolbeck, I., Böker, K. D., Meijaard, E., Md-Zain, B. M., Abdul-Latiff, M. A. B., Ampeng, A., Lakim, M., Abdul-Patah, P., Tosi, A. J., Brameier, M., Zinner, D., and Roos, C.. 2015. Mitogenomic phylogeny of the long-tailed macaque (Macaca fascicularis fascicularis). BMC Genomics 16:222.Google Scholar
Livezey, B. C. 1991. A phylogenetic analysis and classification of Recent dabbling ducks (tribe Anatini) based on comparative morphology. Auk 108:471507.Google Scholar
Livezey, B. C. 1995. Phylogeny and evolutionary ecology of modern seaducks (Anatidae: Mergini). Condor 97:233255.CrossRefGoogle Scholar
Livezey, B. C. 1996a. A phylogenetic analysis of geese and swans (Anseriformes: Anserinae), including selected fossil species. Systematic Biology 45:415450.Google Scholar
Livezey, B. C. 1996b. A phylogenetic analysis of modern pochards (Anatidae: Aythyinae). Auk 113:7493.Google Scholar
Livezey, B. C. 1996c. A phylogenetic reassessment of the tadornine-anatine divergence (Aves: Anseriformes: Anatidae). Annals of the Carnegie Museum 65:2788.Google Scholar
Livezey, B. C. 1997a. A phylogenetic analysis of basal Anseriformes, the fossil Presbyornis, and the interordinal relationships of waterfowl. Zoological Journal of the Linnean Society 121:361428.Google Scholar
Livezey, B. C. 1997b. A phylogenetic analysis of modern sheldgeese and shelducks (Anatidae, Tadornini). Ibis 139:5666.Google Scholar
Livezey, B. C. 1997c. A phylogenetic classification of waterfowl (Aves: Anseriformes), including selected fossil species. Annals of the Carnegie Museum 66:457496.Google Scholar
Livezey, B. C. 1998. A phylogenetic analysis of the Gruiformes (Aves) based on morphological characters, with an emphasis on the rails (Rallidae). Philosophical Transactions of the Royal Society of London B 353:20772151.Google Scholar
Lockley, M. G., and Wright, J. L.. 2003. Pterosaur swim tracks and other ichnological evidence of behaviour and ecology. In E. Buffetaut, and J.-M. Mazin, eds. Evolution and palaeobiology of pterosaurs. Geological Society of London Special Publication 217:297313.Google Scholar
Louchart, A., Tourment, N., and Carrier, J.. 2011. The earliest known pelican reveals 30 million years of evolutionary stasis in beak morphology. Journal of Ornithology 152:1520.Google Scholar
MacLeod, A., Irisarri, I., Vences, M., and Steinfartz, S.. 2016. The complete mitochondrial genomes of the Galápagos iguanas, Amblyrhynchus cristatus and Conolophus subcristatus . Mitochondrial DNA Part A 27:36993700.CrossRefGoogle ScholarPubMed
Maisch, M. W., and Kapitzke, M.. 2010. A presumably marine phytosaur (Reptilia: Archosauria) from the pre-Planorbis beds (Hettangian) of England. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 157:373379.Google Scholar
Malla, T. 2016. Ecology and conservation of fishing cat in Godavari mangroves of Andhra Pradesh. First International Fishing Cat Conservation Symposium, 25–29 November 2015, Nepal, pp. 48–50.Google Scholar
Marean, C. W. 2014. The origins and significance of coastal resource use in Africa and western Eurasia. Journal of Human Evolution 77:1740.Google Scholar
Martin, J. E., Amiot, R., Lécuyer, C., and Benton, M. J.. 2014. Sea surface temperature contributes to marine crocodylomorph evolution. Nature Communications 5:4658.CrossRefGoogle ScholarPubMed
Mayr, G. 2008. Phylogenetic affinities and morphology of the Late Eocene anseriform bird Romainvillia stehlini Lebedinsky, 1927. Neues Jahrbuch für Geologie und Paläontologie Abhandulungen 248:365380.Google Scholar
Mayr, G. 2009. Paleogene fossil birds. Springer, Berlin.Google Scholar
Mayr, G. 2011a. The phylogeny of charadriiform birds (shorebirds and allies)—reassessing the conflict between morphology and molecules. Zoological Journal of the Linnean Society 161:917937.Google Scholar
Mayr, G. 2011b. Cenozoic mystery birds—on the phylogenetic affinities of bony-toothed birds (Pelagornithidae). Zoologica Scripta 40:448467.Google Scholar
Mayr, G. 2014. The Eocene Juncitarsus—its phylogenetic position and significance for the evolution and higher-level affinities of flamingos and grebes. Comptes Rendus Palevol 13:918.Google Scholar
Mayr, G. 2015. Cranial and vertebral morphology of the straight-billed Miocene phoenicopteriform bird Palaelodus and its evolutionary significance. Zoologischer Anzeiger 254:1826.Google Scholar
Mayr, G., Goedert, J. L., and Vogel, O.. 2015. Oligocene plotopterid skulls from western North America and their bearing on the phylogenetic affinities of these penguin-like seabirds. Journal of Vertebrate Paleontology 35:e943764.Google Scholar
Mayr, G., De Pietri, V. L., and Scofield, R. P.. 2017. A new fossil from the mid-Paleocene of New Zealand reveals unexpected diversity of world’s oldest penguins. Science of Nature 104:9.Google Scholar
McVay, J. D., Flores-Villela, O., and Karstens, B.. 2015. Diversification of North American natricine snakes. Biological Journal of the Linnean Society 116:112.Google Scholar
Miller, E. C., and Wiens, J. J.. 2017. Extinction and time help drive the marine-terrestrial biodiversity gradient: is the ocean a deathtrap? Ecology Letters 20:911921.Google Scholar
Modesto, S. P. 2010. Postcranial skeleton of the aquatic parareptile Mesosaurus tenuidens from the Gondwanan Permian. Journal of Vertebrate Paleontology 30:13781395.Google Scholar
Mohd Sah, S. A., and Stuebing, R. B.. 1996. Diet, growth and movements of juvenile crocodiles Crocodylus porosus Schneider in the Klias River, Sabah. Journal of Tropical Ecology 12:651662.Google Scholar
Motani, R., Jiang, D.-Y., Chen, G.-B., Tintori, A., Rieppel, O., Ji, C., and Huang, J.-D.. 2015. A basal ichthyosauriform with a short snout from the Lower Triassic of China. Nature 517:485488.Google Scholar
Motani, R., Jiang, D., Tintori, A., Ji, C., and Huang, J.-D.. 2017. Pre-versus post-mass extinction divergence of Mesozoic marine reptiles dictated by time-scale dependence of evolutionary rates. Proceedings of the Royal Society B 284:2017.0241.Google Scholar
Murphy, J. C. 2012. Marine invasions by non-sea snakes, with thoughts on terrestrial-aquatic-marine transitions. Integrative and Comparative Biology 52:217226.Google Scholar
Nicholls, E. L., Brinkman, D. B., and Wu, X.-C.. 1998. A new archosaur from the Upper Triassic Pardonet Formation of British Columbia. Canadian Journal of Earth Sciences 35:11341142.Google Scholar
Oaks, B. R. 2011. A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution 65:32853297.Google Scholar
O’Leary, M. A., Bloch, J. I., Flynn, J. J., Gaudin, T. J., Giallombardo, A., Giannini, N. P., Goldberg, S. L., Kraatz, B. P., Luo, Z.-X., Meng, J., Perini, F. A., Randall, N. S., Rougier, G. W., Sardis, E. J., Silcox, M. T., Simmons, N. B., Spalding, M., Velazco, P. M., Weksler, M., Wible, J. R., and Cirranello, A. L.. 2013. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339:662667.Google Scholar
Olson, S. L. 1983. Fossil seabirds and changing marine environments in the Late Tertiary of South Africa. South African Journal of Science 79:399402.Google Scholar
Olson, S. L. 1985. The fossil record of birds. In D. S. Farmer, J. R. King, and K. C. Parkes, eds. Avian biology 8:79252. Academic Press, New York.Google Scholar
Olson, S. L. 1994. A giant Presbyornis (Aves: Anseriformes) and other birds from the Paleocene Aquia Formation of Maryland and Virginia. Proceedings of the Biological Society of Washington 107:429435.Google Scholar
Olson, S. L. 2011. A new genus and species of unusual tern (Aves: Laridae: Anoinae) from the Middle Miocene Calvert Formation of Virginia. Proceedings of the Biological Society of Washington 124:270279.Google Scholar
Olson, S. L. 2013. Hawaii’s first fossil bird: history, geological age, and taxonomic status of the extinct goose Geochen rhuax Wetmore (Aves: Anatidae). Proceedings of the Biological Society of Washington 126:161168.Google Scholar
Olson, S. L., and Rasmussen, P. C.. 2001. Miocene and Pliocene birds from the Lee Creek Mine, North Carolina. Smithsonian Contributions to Paleobiology 90:233365.Google Scholar
Ord, T. J., Summers, T. C., Noble, M. M., and Fulton, C. J.. 2017. Ecological release from aquatic predation is associated with the emergence of marine blenny fishes onto land. American Naturalist 189:570579.Google Scholar
Ortiz, R. M., Plotkin, P. T., and Owens, D. W.. 1997. Predation upon olive ridley sea turtles (Lepidochelys olivacea) by the American crocodile (Crocodylus acutus) at Playa Nancite, Costa Rica. Chelonian Conservation and Biology 2:585587.Google Scholar
Ősi, A. 2011. Feeding-related characters in basal pterosaurs: implications for jaw mechanism, dental function and diet. Lethaia 44:136152.Google Scholar
Otálora-Ardila, A., Herrera M., L. G., Flores-Martinez, J. J., and Voigt, C. C.. 2013. Marine and terrestrial food sources in the diet of the fish-eating Myotis vivesi . Journal of Mammalogy 94:11021110.Google Scholar
Ottenburgs, J., Megens, H., Kraus, R. H. S., Madsen, O., van Hooft, P., van Wieren, S. E., Crooijmans, R. P. M. A., Ydenberg, R. C., and Groenen, M. A. M.. 2016. A tree of geese: a phylogenomic perspective on the evolutionary history of True Geese. Molecular Phylogenetics and Evolution 101:303313.Google Scholar
Paxinos, E. E., James, H. F., Olson, S. L., Sorensen, M. D., Jackson, J., and Fleischer, R. C.. 2002. MtDNA from fossils reveals a radiation of Hawaiian geese recently derived from the Canada goose (Branta canadensis). Proceedings of the National Academy of Sciences USA 99:13991404.Google Scholar
Piersma, T., Aelst, R., Kurk, K., Berkhoudt, H., and Maas, L. R. M.. 1998. A new pressure sensory mechanism and prey detection in birds: the use of principles of seabed dynamics? Proceedings of the Royal Society of London B 265:13771383.Google Scholar
Platt, S. C., Thorbarnnarson, J. B., Rainwater, T. R., and Martin, D. R.. 2013. Diet of the American crocodile (Crocodylus acutus) in marine environments of coastal Belize. Journal of Herpetology 47:110.Google Scholar
Polcyn, M. J., Jacobs, L. L., Araújo, R., Schulp, A. S., and Mateus, O.. 2014. Physical drivers of mosasaur evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 400:1727.Google Scholar
Pons, J.-M., Hassanin, A., and Crochet, P.-A.. 2005. Phylogenetic relationships within the Laridae (Charadriiformes: Aves) inferred from mitochondrial markers. Molecular Phylogenetics and Evolution 37:686699.Google Scholar
Prakash, M., Quéré, D., and Bush, J. W. M.. 2008. Surface tension transport of prey by feeding shorebirds: the capillary ratchet. Science 320:931934.Google Scholar
Pritchard, A. C., Turner, A. H., Nesbitt, S. J., Irmis, R. B., and Smith, N. B.. 2015. Late Triassic tanystropheids (Reptilia, Archosauromorpha) from northern New Mexico (Petrified Forest Member, Chinle Formation) and the biogeography, functional morphology, and evolution of Tanystropheidae. Journal of Vertebrate Paleontology 35:e011186.Google Scholar
Procheş, S., Polgar, G., and Marshall, D. J.. 2014. K-Pg events facilitated lineage transitions between terrestrial and aquatic ecosystems. Biology Letters 10:2014.0010.Google Scholar
Prum, R. O., Berv, J. S., Dornburg, A., Field, D. J., Townsend, J. P., Lemmon, E. M., and Lemmon, A. R.. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569573.Google Scholar
Pyenson, N. D., and Vermeij, G. J.. 2016. The rise of ocean giants: maximum body size in Cenozoic marine mammals as an indicator for productivity in the Pacific and Atlantic Oceans. Biology Letters 12:2016.0186.Google Scholar
Pyenson, N. D., Kelley, N. P., and Parham, J. F.. 2014. Marine tetrapod macroevolution: physical and biological drivers on the 250 Ma of invasion and evolution in ocean ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology 400:18.Google Scholar
Rage, J.-C., Vullo, R., and Néradeau, D.. 2016. The mid-Cretaceous snake Simoliophis rochebrunei Sauvage, 1880 (Squamata: Ophidia) from its type area (Charentes, southwestern France): redescription, distribution, and palaeoecology. Cretaceous Research 58:234253.Google Scholar
Rasmussen, A. R., Murphy, J. C., Ompi, M., Whitfield Gibbons, J., and Uetz, P.. 2011. Marine reptiles. PLoS ONE 6:e27373.Google Scholar
Ray, C. E. 1976. Geography of phocid evolution. Systematic Zoology 25:391406.Google Scholar
Ray, C. E., Domning, D. P., and McKenna, M. C.. 1994. A new specimen of Behemotops proteus (order Desmostylia) from the marine Oligocene of Washington. Proceedings of the San Diego Society of Natural History 29:205222.Google Scholar
Recher, H. F. 1966. Some aspects of the ecology of migrant shorebirds. Ecology 47:393407.Google Scholar
Reeder, W. G. 1951. Stomach analysis of a group of shorebirds. Condor 53:4345.Google Scholar
Reynoso, V.-H. 2000. An unusual aquatic sphenodontian (Reptilia: Diapsida) from the Tlayua Formation (Albian), central Mexico. Journal of Paleontology 74:133148.Google Scholar
Richardson, H., and Verbeek, N. A. M.. 1986. Diet selection and optimization by Northwestern crows feeding on Japanese littleneck clams. Ecology 67:12191226.Google Scholar
Rieppel, O., Li, C., and Fraser, N. C.. 2008. The skeletal anatomy of the Triassic protorosaur Dinocephalosaurus orientalis Li, from the Middle Triassic of Guizhou Province, southern China. Journal of Vertebrate Paleontology 28:95110.Google Scholar
Sabat, P., Fariña, J., and Soto-Gamboa, M.. 2003. Terrestrial birds living on marine environments: does dietary composition of Cinclodes nigrofumosus (Passeriformes: Furnariidae) predict their osmotic load? Revista Chilena de Historia Natural 76:335343.Google Scholar
Sabat, P., Maldonado, K., Fariña, J. M., and Martínez del Rio, C.. 2006. Osmoregulatory capacity and the ability to use marine resources in two coastal waterbirds (Cinclodes: Furnariidae) along a latitudinal gradient. Oecologia 148:250254.Google Scholar
Sanders, K. L., Mumpuni, , Hamidy, A., Head, J. J., and Gower, D. J.. 2010a. Phylogeny and divergence times of filesnakes (Acrochordus): inferences from morphology, fossils and three molecular loci. Molecular Phylogenetics and Evolution 56:857867.Google Scholar
Sanders, K. L., Mumpuni, , and Lee, M. S. Y.. 2010b. Uncoupling ecological innovation and speciation in sea snakes (Elapidae, Hydrophiinae, Hydrophiini). Journal of Evolutionary Biology 23:26852693.Google Scholar
Sanders, K. L., Lee, M. S. Y., Mumpuni, , Bertozzi, T., and Rasmussen, A. R.. 2013. Multilocus phylogeny and recent rapid radiation of the viviparous sea snakes (Elapidae: Hydrophiinae). Molecular Phylogenetics and Evolution 66:575591.CrossRefGoogle ScholarPubMed
Sealfon, R. A. 2007. Dental divergence supports species status of the extinct sea mink (Carnivora: Mustelidae: Neovison macrodon). Journal of Mammalogy 88:371383.Google Scholar
Shine, R., Harlow, P., Keogh, J. S., and Boeadi, . 1995. Biology and commercial utilization of acrochordid snakes, with special reference to Karung (Acrochordus javanicus). Journal of Herpetology 29:352360.Google Scholar
Smith, N. D. 2010. Phylogenetic analysis of Pelecaniformes (Aves) based on osteological data: implications for waterbird phylogeny and fossil calibration studies. PLoS ONE 5:e13354.Google Scholar
Smith, N. D., and Ksepka, D. T.. 2015. Five well-supported fossil calibrations within the “waterbird” assemblage (Tetrapoda, Aves). Palaeontologia Electronica 18.1.7FC.Google Scholar
Smith, T. S., and Partridge, S. T.. 2004. Dynamics of intertidal foraging by coastal brown bears in southwestern Alaska. Journal of Wildlife Management 68:233240.Google Scholar
Steyer, J. S. 2002. The first articulated trematosaur “amphibian” from the Lower Triassic of Madagascar: implications for the phylogeny of the group. Palaeontology 45:771783.Google Scholar
Stidham, T. A. 2015. A new species of Limnofregata (Pelecaniformes: Fregatidae) from the Early Eocene Wasatch Formation of Wyoming: implications for palaeoecology and palaeobiology. Palaeontology 58:239249.Google Scholar
Stirling, I., and van Meurs, R.. 2015. Longest recorded underwater dive by a polar bear. Polar Biology 38:13011304.Google Scholar
Stocker, M. R., Zhao, L.-J., Nesbitt, S. J., Wu, X.-C., and Li, C.. 2017. A short-snouted, Middle Triassic phytosaur and its implications for the morphological evolution and biogeography of Phytosauria. Scientific Reports 7:46028.Google Scholar
Stucchi, M., and Urbina, M.. 2004. Rhamphastosula (Aves, Sulidae), a new genus from the Early Pliocene of the Pisco Formation, Peru. Journal of Vertebrate Paleontology 24:974978.Google Scholar
Stucchi, M., Emslie, S. D., Varas-Malca, R. M., and Urbina-Schmitt, M.. 2015. A new Late Miocene condor (Aves, Cathartidae) from Peru and the origin of South American condors. Journal of Vertebrate Paleontology 35:e972507.Google Scholar
Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, M.. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science 338:369370.Google Scholar
Tan, A., Tan, S. H., Vyas, D., Malaivijitnond, S., and Gumert, M. D.. 2015. There is more than one way to crack an oyster: identifying variation in Burmese long-tailed macaque (Macaca fascicularis aurea) stone-tool use. PLoS ONE 10:e0124733.Google Scholar
Tedford, R. H., Barnes, L. G., and Ray, C. E.. 1994. The Early Miocene littoral ursoid carnivoran Kolponomos: systematics and mode of life. Proceedings of the San Diego Society of Natural History 29:1132.Google Scholar
Thiemann, G. W., Iverson, S. J., Stirling, I., and Obbard, M. E.. 2011. Individual patterns of prey selection and dietary specialization in an Arctic marine carnivore. Oikos 120:14691478.Google Scholar
Tremul, P. R. 2017. Field observations provide an insight into the ecology of the rusty monitor (Vanarus semiremex) in south-eastern Queensland, Australia. Memoirs of the Queensland. Museum 60:7789.Google Scholar
Vermeij, G. J. 2012. The evolution of gigantism on temperate seashores. Biological Journal of the Linnean Society 106:776793.Google Scholar
Vermeij, G. J. 2016. Gigantism and its implications for the history of life. PLoS ONE 11:e0146092.Google Scholar
Vermeij, G. J., and Dudley, R.. 2000. Why are there so few transitions between aquatic and terrestrial ecosystems? Biological Journal of the Linnean Society 70:541554.Google Scholar
Vianna, J. A., Ayerdi, P., Medina-Vogel, G., Mangeo, J. C., Zeballos, H., Apaza, M., and Faugeron, S.. 2010. Phylogeography of the marine otter (Lontra felina): historical and contemporary factors determining its distribution. Journal of Heredity 101:676689.Google Scholar
Vianna, J. A., Medina-Vogel, G., Chehébar, C., Sielfeld, W., Olavarría, C., and Faugeron, S.. 2011. Phylogeography of the Patagonian otter Lontra provocax: adaptive divergence to marine habitat or signature of southern glacial refugia? BMC Evolutionary Biology 11:53.Google Scholar
Villamil, J., Nuñez Demarco, P., Meneghel, M., Blanco, R. E., Jones, W., Rinderknecht, A., Laurin, M., and Piñeiro, G.. 2016. Optimal swimming speed estimates in the Early Permian mesosaurid Mesosaurus tenuidens (Gervais 1865) from Uruguay. Historical Biology 28:963971.Google Scholar
Warheit, K. I. 1992. A review of the fossil seabirds from the Tertiary of the North Pacific: plate tectonics, paleoceanography, and faunal change. Paleobiology 18:401424.Google Scholar
Webb, G. J. W., Hollis, G. J., and Manolis, S. C.. 1991. Feeding, growth, and food conversion rates of wild juvenile saltwater crocodiles (Crocodylus porosus). Journal of Herpetology 25:462473.Google Scholar
Willemsen, G. F. 1992. A revision of the Pliocene and Quaternary Lutrinae from Europe. Scripta. Geologica 101:1115.Google Scholar
Witton, M. P. 2015. Were early pterosaurs inept terrestrial locomotors? PeerJ 3:e1018.Google Scholar
Worthy, T. H., Worthy, J. P., Tennyson, A. J. D., and Scofield, R. P.. 2013. A bittern (Aves: Ardeidae) from the Early Miocene of New Zealand. Paleontological Journal 47:13311343.Google Scholar
Young, M. T., Steel, L., Foffa, D., Price, T., Naish, D., and Tennant, J. P.. 2014. Marine tethysuchian crocodyliform from the ? Aptian–Albian (Lower Cretaceous) of the Isle of Wight, UK. Biological Journal of the Linnean Society 113:854871.Google Scholar
Zach, R. 1978. Selection and dropping of whelks by Northwestern crows. Behaviour 67:135148.Google Scholar
Zach, R. 1979. Shell dropping: decision-making and optimal foraging in Northwestern crows. Behaviour 68:106116.Google Scholar
Zee, D. van der. 1981. Prey of the Cape clawless otter (Aonyx capensis) in the Tsotsikama Coastal National Park, South Africa. Journal of Zoology 194:467483.Google Scholar
Zelenkov, N. V., and Panteleyev, A. V.. 2015. Three bird taxa (Aves: Anatidae, Phasianidae, and Scolopacidae) from the Late Miocene of the Sea of Azov (southwestern Russia). Palaontologische Zeitschrift 89:515527.Google Scholar