Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T09:30:41.361Z Has data issue: false hasContentIssue false

The persistence of Burgess Shale-type faunas: implications for the evolution of deeper-water faunas

Published online by Cambridge University Press:  03 November 2011

S. Conway Morris
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K.

Abstract

Discoveries, most of them recently, in more than thirty Lower and Middle Cambrian horizons with soft-bodied fossils have shown that forty-one of the genera occur also in the celebrated Burgess Shale (Middle Cambrian). Significantly, they tend to have lengthy stratigraphic durations which together encompass an interval from the early Lower Cambrian (Tommotian) to near the end of the Middle Cambrian. At least some genera have also wide geographical ranges, with occurrences around much of the Laurentian (N America) craton, and also in N and S China, Australia, Siberia, Spain and Poland. Although a few genera, e.g. Isoxys, may have been pelagic, for the most part these distributions are explained in terms of a deeper-water biota with an evolutionarily conservative aspect. Both the origins and further recruitment to this biota may have been from shallower water, with more limited in situ diversification. It is speculated that this distinctive Cambrian biota was gradually driven to extinction with the arrival of Ordovician competitors, although some relics may have survived until at least the Devonian. This history has implications for our understanding of deeper-water faunas throughout the Phanerozoic, and supports the notion that archaic forms may take refuge in this environment.

Type
Physiological adaptations in some recent and fossil organisms
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, J. D. 1981. Generalizations about Grand Cycles. US GEOL SURV OPEN FILE REP 81–743, 814.Google Scholar
Alexander, R. R. 1979. Differentiation of generic extinction rates among Upper Ordovician–Devonian articulate brachiopods. PALEOBIOLOGY 5, 133–43.CrossRefGoogle Scholar
Allen, J. A. 1978. Evolution of the deep-sea protobranch bivalves. PHILOS TRANS R SOC LONDON B284, 387401.Google Scholar
Allen, J. A. & Sanders, H. L. 1969. Nucinella serrei Lamy (Bivalvia: Protobranchia), a monomyarian solemyid and possible living actinodont. MALACOLOGIA 7, 381–96.Google Scholar
Améziane-Cominardi, N., Bourseau, J-P. & Roux, M. 1987. Les crinoides pédonculés de Nouvelle-Calédonie (S. W. Pacifique): une faune bathyale ancestrale issue de la Mésogée mésozoique. C R HEBD SEANC ACAD SCI PARIS 304 (Ser III), 15–8.Google Scholar
Ausich, W. I., Meyer, D. L. & Waters, J. A. 1988. Middle Mississippian blastoid extinction event. SCIENCE (WASHINGTON) 240, 796–8.CrossRefGoogle ScholarPubMed
Baarli, B. G. & Harper, D. A. T. 1986. Relict Ordovician brachiopod faunas in the Lower Silurian of Asker, Oslo region, Norway. NORSK GEOL TIDDSSKR 66, 8798.Google Scholar
Bengtson, S. 1968. The problematical genus Mobergella from the Lower Cambrian of the Baltic area. LETHAIA 1, 325–51.CrossRefGoogle Scholar
Bengtson, S. 1977. Aspects of problematic fossils in the early Palaeozoic. ACTA UNIV UPSALIENSIS 415, 171.Google Scholar
Bishop, G. A. 1983. Fossil decapod Crustacea from the late Cretaceous Coon Creek Formation, Union County, Mississippi. J CRUST BIOL 3, 417–30.CrossRefGoogle Scholar
Blake, D. B. & Zinsmeister, W. J. 1988. Eocene asteroids (Echinodermata) from Seymour Island, Antarctic Peninsula. MEM GEOL SOC AM 169, 489498.Google Scholar
Blaker, M. R. 1986. Notes on the trilobite fauna of the Henson Gletscher Formation (Lower and Middle Cambrian) of central North Greenland. RAPP GRON GEOL UNDERS 132, 6573.Google Scholar
Bottjer, D. J., Droser, M. L. & Jablonski, D. 1988. Palaeo-environmental trends in the history of trace fossils. NATURE LONDON 333, 252–5.CrossRefGoogle Scholar
Bourseau, J-P., Améziane–Cominardi, N. & Roux, M. 1987. Un crinoide pédonculé nouveau (Echinodermes), representant actuel de la famille jurassique des Hemicrinidae: Gymnocrinus richeri nov. sp. des fonds bathyaux de Nouvelle Calédonie (S.W. Pacifique). C R HEBD SEANC ACAD SCI PARIS 305 (ser III), 595–99.Google Scholar
Brenchley, P. J. & Cocks, L. R. M. 1982. Ecological associations in a regressive sequence: the latest Ordovician of the Oslo–Asker district, Norway. PALAEONTOLOGY 25, 783815.Google Scholar
Briggs, D. E. G. 1976. The arthropod Branchiocaris n. gen., Middle Cambrian, Burgess Shale, British Columbia. BULL GEOL SURV CAN 264, 129.Google Scholar
Briggs, D. E. G. 1979. Anomalocaris, the largest known Cambrian arthropod. PALAEONTOLOGY 22, 631–64.Google Scholar
Briggs, D. E. G. & Mount, J. A. 1982. The occurrence of the giant arthropod Anomalocaris in the Lower Cambrian of southern California, and the overall distribution of the genus. J PALEONTOL 56, 1112–8.Google Scholar
Briggs, D. E. G. & Robison, R. A. 1984. Exceptionally preserved nontrilobite arthropods and Anomalocaris from the Middle Cambrian of Utah. PALEONT CONTRIB UNIV KANSAS PAP 111, 123.Google Scholar
Bruton, D. L. 1981. The arthropod Sidneyia inexpectans, Middle Cambrian, Burgess Shale, British Columbia. PHILOS TRANS R SOC LONDON B295, 619–56.Google Scholar
Buckeridge, J. S. 1983. Fossil barnacles (Cirripedia: Thoracica) of New Zealand and Australia. NZ GEOL SURV PALEONTOL BULL 50, 1151.Google Scholar
Buzas, M. A. & Culver, S. J. 1984. Species duration and evolution: Benthic Foraminifera on the Atlantic continental margin of North America. SCIENCE (WASHINGTON) 225, 829–30.CrossRefGoogle ScholarPubMed
Campbell, L. D. 1971. Occurrence of “Ogygopsis shale” fauna in southeastern Pennsylvania. J PALEONTOL 45, 437–40.Google Scholar
Campbell, L. & Kauffman, M. E. 1969. Olenellus fauna of the Kinzers Formation, southeastern Pennsylvania. PROC PA ACAD SCI 43, 172–6.Google Scholar
Junyuan, Chen, Xianguang, Hou & Haozhi, Lu 1989a. Early Cambrian netted scale-bearing worm-like sea animal. ACTA PALAEONTOL SIN 28, 116. (In Chinese, with English abstract.)Google Scholar
Junyuan, Chen, Xianguang, Hou & Haozhi, Lu 1989b. Lower Cambrian leptomitids (Demospongea), Chengjiang, Yunnan. ACTA PALAEONTOL SIN 28, 1730 (In Chinese, with English abstract.)Google Scholar
Junyuan, Chen, Xianguang, Hou & Haozhi, Lu 1989c. Early Cambrian hock glass-like rare sea animal Dinomischus (Entoprocta) and its ecological features. ACTA PALAEONTOL SIN 28, 5871. (In Chinese, with English abstract.)Google Scholar
Childress, J. J. & Somero, G. N. 1979. Depth-related enzymic activities in muscle, brain and heart of deep-living pelagic marine teleosts. MAR BIOL 52, 273–83.CrossRefGoogle Scholar
Cisne, J. L. 1973. Beecher's Trilobite Bed revisited: Ecology of an Ordovician deepwater fauna. POSTILLA 160, 125.Google Scholar
Collins, D. 1986. Paradise revisited. ROTUNDA 19, 30–9.Google Scholar
Collins, D., Briggs, D. & Conway, Morris S. 1983. New Burgess Shale fossil sites reveal Middle Cambrian faunal complex. SCIENCE (WASHINGTON) 222, 163–7.CrossRefGoogle ScholarPubMed
Conway, Morris S. 1977a. Fossil priapulid worms. SPEC PAP PALAEONTOL 20, iv, 195.Google Scholar
Conway, Morris S. 1977b. A new entoproct-like organism from the Burgess Shale of British Columbia. PALAEONTOLOGY 20, 833–45.Google Scholar
Conway, Morris S. 1979. Middle Cambrian polychaetes from the Burgess Shale of British Columbia. PHILOS TRANS R SOC LONDON B285, 227–74.Google Scholar
Conway, Morris S. 1985a. Cambrian Lagerstätten: their distribution and significance. PHILOS TRANS R SOC LONDON B311, 4965.Google Scholar
Conway, Morris S. 1985b. The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada. PHILOS TRANS R SOC LONDON B307, 507–86.Google Scholar
Conway, Morris S. 1986. The community structure of the Middle Cambrian Phyllopod bed (Burgess Shale). PALAEONTOLOGY 29, 423–67.Google Scholar
Conway, Morris S. 1987. The search for the Precambrian–Cambrian boundary. AM SCI 75, 156–67.Google Scholar
Conway, Morris S. 1988. Radiometric dating of the Precambrian–Cambrian Boundary in the Avalon Zone. BULL NY STATE MUS 463, 53–8.Google Scholar
Conway, Morris S.Peel, J. S., Higgins, A. K., Soper, N. J. & Davis, N. C. 1987. A Burgess Shale-like fauna from the Lower Cambrian of North Greenland. NATURE LONDON 326, 181–3.Google Scholar
Conway, Morris S. & Jenkins, R. J. F. 1985. Healed injuries in Early Cambrian trilobites from South Australia. ALCHERINGA 9, 167–77.Google Scholar
Conway, Morris S. & Robison, R. A. 1986. Middle Cambrian priapulids and other soft-bodied fossils from Utah and Spain. PALEONTOL CONTRIB UNIV KANSAS PAP 117, 122.Google Scholar
Conway, Morris S. S. & Robison, R. A. 1986. Middle Cambrian priapulids and other soft-bodied fossils from Utah and Spain. PALEONTOL CONTRIB UNIV KANSAS PAP 117, 122.Google Scholar
Conway, Morris S. & Robison, R. A. 1988. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. PALEONTOL CONTRIB UNIV KANSAS PAP 122, 148.Google Scholar
Conway, Morris S. & Rushton, A. W. A. 1988. Precambrian to Tremadoc biotas in the Caledonides. In Harris, A. L. & Fettes, D. J. (eds) The Caledonian–Appalachian Orogen. GEOL SOC SPEC PUBL 38, 93109.CrossRefGoogle Scholar
Conway, Morris S. & Whittington, H. B. 1979. The animals of the Burgess Shale. SCI AM 241(1), 122–33.Google Scholar
Conway, Morris S. & Whittington, H. B. 1985. Fossils of the Burgess Shale, a national treasure in Yoho National Park, British Columbia. MISC REP GEOL SURV CAN 43, 131.Google Scholar
Copper, P. 1986. Frasnian/Famennian mass extinction and cold-water oceans. GEOLOGY 14, 835–9.2.0.CO;2>CrossRefGoogle Scholar
Dalmatov, B. A. 1983. Cross section of the Lower–Middle Cambrian boundary in the Kooka River Basin (Verkhne–Angarskiy Ridge). In Biostratigraphy and fauna of sediments of Lower and Middle Cambrian Boundary in Siberia. AKAD NAUK SSR TRUDY INSTIT GEOL GEOPHYS BULL 548, 6071. (In Russian).Google Scholar
Dawson, J. W. 1896. Additional notes on fossil sponges and other organic remains from the Quebec Group of Little Metis on the lower St Lawrence; with notes on some of the specimens by Dr G. H. Hinde. TRANS R SOC CAN (2)2, 91121.Google Scholar
Dawson, J. W. & Hinde, G. I. 1889. On new species of fossil sponges from the Siluro–Cambrian at Little Metis on the lower St Lawrence. TRANS R SOC CAN 7(4), 3155.Google Scholar
Douglas, R. & Woodruff, F. 1981. Deep-sea benthic foraminifera. In Emiliani, C. (ed) The Sea, 7 (The oceanic lithosphere), 1233–328. New York: Wiley Interscience.Google Scholar
Dzik, J. & Lendzion, K. 1988. The oldest arthropods of the East European platform. LETHAIA 21, 2938.CrossRefGoogle Scholar
Feldmann, R. M. & Wilson, M. T. 1988. Eocene decapod crustaceans from Antarctica. MEM GEOL SOC AM 169, 465488.Google Scholar
Feldmann, R. M. & Zinsmeister, W. J. 1984. New fossil crabs (Decapoda: Brachyura) from the La Meseta Formation (Eocene) of Antarctica: paleogeographic and biogeographic implications. J PALEONTOL 58, 1046–61.Google Scholar
Fine, M. L., Horn, M. H. & Cox, B. 1987. Acanthonus armatus, a deep-sea teleost fish with a minute brain and large ears. PROC R SOC LONDON B230, 257–65.Google Scholar
Fortey, R. A. 1980. Generic longevity in the Lower Ordovician trilobites: relation to environment. PALEOBIOLOGY 6, 2431.CrossRefGoogle Scholar
Fortey, R. A. 1983. Cambrian–Ordovician trilobites from the boundary beds in western Newfoundland and their phylogenetic significance. SPEC PAP PALAEONTOL 30, 179211.Google Scholar
Fortey, R. A. & Owens, R. M. 1987. The Arenig Series in South Wales: stratigraphy and palaeontology. BULL BR MUS (NAT HIST) GEOL 41, 69307.Google Scholar
Frakes, L. A. & Francis, J. E. 1988. A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. NATURE LONDON 333, 547–9.CrossRefGoogle Scholar
Fritz, W. H. 1971. Geological setting of the Burgess Shale. In Extraordinary fossils. SYMP N AM PALEONTOL CONV 1969, Pt. I, 11551170.Google Scholar
Fritz, W. H. 1972. Lower Cambrian trilobites from the Sekwi Formation type section, Mackenzie Mountains, northwestern Canada. BULL GEOL SURV CAN 212, 190.Google Scholar
Gale, N. H. 1985. Numerical calibration of the Palaeozoic time-scale; Ordovician, Silurian and Devonian periods. In Snelling, N. J. (ed) The Chronology of the Geological Record, MEM GEOL SOC LONDON 10, 8188.CrossRefGoogle Scholar
George, R. Y. 1979. What adaptive stategies promote immigration and speciation in deep-sea environment. SARSIA 64, 61–5.CrossRefGoogle Scholar
Glaessner, M. F. 1979. Lower Cambrian Crustacea and annelid worms from Kangaroo Island, South Australia. ALCHERINGA 3, 2131.CrossRefGoogle Scholar
Gorjanksy, V. Yu. 1977. First find of remains of a sponge in the Lower Cambrian of East Siberia. EZHEG VSES PALEONT OBSHCH 20, 274–6 (in Russian).Google Scholar
Gould, S. J. 1988. Trends as changes in variance: a new slant on progress and directionality in evolution. J PALEONTOL 62, 319–29.CrossRefGoogle Scholar
Gunther, L. F. & Gunther, V. G. 1981. Some Middle Cambrian fossils of Utah. BRIGHAM YOUNG UNIV GEOL STUD 28, iv, 181.Google Scholar
Gutschick, R. C. 1986. Middle Ordovician agglutinated foraminifera including Reophax from the Mifflin Formation, Platteville Group of Illinois. J PALEONTOL 60, 233–48.CrossRefGoogle Scholar
Harmelin, J.-G. & Aristegui, J. 1988. New Cribrilinidae (Bryozoa, Cheilostomata) from the upper bathyal of the Atlanto–Mediterranean region. J NAT HIST 22, 507–35.CrossRefGoogle Scholar
Hickman, C. S. 1984. A new archaeogastropod (Rhipidoglossa, Trochacea) from hydrothermal vents on the East Pacific Rise. ZOOL SCRIPTA 13, 1925.CrossRefGoogle Scholar
Xianguang, Hou 1987a. Two new arthropods from Lower Cambrian, Chengjiang, Eastern Yunnan. ACTA PALAEONTOL SIN 26, 236–56. (In Chinese, with English abstract.)Google Scholar
Xianguang, Hou 1987b. Early Cambrian large bivalved arthropods from Chengjiang, Eastern Yunnan. ACTA PALAEONTOL SIN 26, 286–97. (In Chinese, with English abstract.)Google Scholar
Xianguang, Hou, Junyuan, Chen & Haozhi, Lu 1989. Early Cambrian new arthropods from Chengjiang, Yunnan. ACTA PALAEONTOL SIN 28, 4257. (In Chinese, with English abstract.)Google Scholar
Xianguang, Hou & Junyuan, Chen 1989. Early Cambrian tentacled worm-like animals (Facivermis gen. nov.) from Chengjiang, Yunnan. ACTA PALAEONTOL SIN 28, 3241. (In Chinese, with English abstract.)Google Scholar
Xianguang, Hou & Weiguo, Sun 1988. Discovery of Chengjiang fauna at Meishucun, Jinning, Yunnan. ACTA PALAEONTOL SIN 27, 112. (In Chinese, with English abstract.)Google Scholar
Houbrick, R. S. 1979. Classification and systematic relationship of the Abyssochrysidae, a relict family of bathyal snails (Prosobranch: Gastropod). SMITHSON CONTRIB ZOOL 290, 121.CrossRefGoogle Scholar
Howell, B. F. 1944. The age of the Sponge Beds at Little Metis, Quebec. BULL WAGNER INST SCI PHILADELPHIA 19(1), 116.Google Scholar
Howell, B. F. 1963. New Cambrian conchostracans from Wyoming and Newfoundland, brachiopods from Vermont, and worm, hydrozoan, and problematicum from Newfoundland. J PALEONTOL 37, 264–7.Google Scholar
Hurcewicz, H. & Czarniecki, S. 1985. Lyssakidae sponges from the Carboniferous Limestone and the Culm of southern Poland and their environmental differentiation. ROCZN POL TOW GEOL 55, 333–54.Google Scholar
Jablonski, D. & Bottjer, D. J. 1987. Onshore-offshore evolutionary patterns in post–Paleozoic echinoderms. SIXTH INT ECHINODERM CONF ABSTR 72.Google Scholar
Jablonski, D., Sepkoski, J. J., Bottjer, D. J. & Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. SCIENCE (WASHINGTON) 222, 1123–5.CrossRefGoogle ScholarPubMed
Zhiwen, Jiang 1982. Homopoda. In Huilin, Luo, Zhiwen, Jiang, Xiche, Wu, Xueliang, Song & Lin, Ouyang et al. . (eds) The Sinian–Cambrian boundary in eastern Yunnan, China, 215. Yunnan: People's Publishing House.Google Scholar
Kammer, T. W., Brett, C. E., Boardman, D. R. & Mapes, R. H. 1986. Ecologic stability of the dysaerobic biofacies during the late Paleozoic. LETHAIA 19, 109–21.CrossRefGoogle Scholar
Kauffman, E. G. 1978. Evolutionary rates and patterns among Cretaceous Bivalvia. PHILOS TRANS R SOC LONDON B284, 277304.Google Scholar
Kowalski, W. R. 1983. Stratigraphy of the upper Precambrian and lowest Cambrian strata in southern Poland. ACTA GEOL POL 33, 183218.Google Scholar
Krishtofovich, A. N. 1953. Discovery of clubmoss plant in the Cambrian deposits of eastern Siberia. DOKL AKAD NAUK SSSR 91, 1377–9 (in Russian).Google Scholar
Kussakin, O. G. 1973. Peculiarities of the geographical and vertical distribution of marine isopods and the problem of deep-sea fauna origin. MAR BIOL 23, 1934.CrossRefGoogle Scholar
Lendzion, K. 1975. Fauna of the Mobergella Zone in the Polish Lower Cambrian. KWART GEOL 19, 237–42.Google Scholar
Lendzion, K. 1977. Cassubia—a new generic name for Pomerania Lendzion, 1975. KWART GEOL 21, 211.Google Scholar
Levi, C. & Levi, P. 1988. Nouveaux spongiaires lithistides bathyaux à affinités crétacées de la Nouvelle–Calédonie. BULL MUS HIST NAT PARIS (SECT A) 10 (4th series), 241–63.Google Scholar
Lindström, M. 1984. Baltoscandic conodont life environments in the Ordovician: Sedimentologic and paleogeographic evidence. SPEC PAP GEOL SOC AM 196, 3342.Google Scholar
Lipps, J. H. & Hickman, C. S. 1982. Origin, age and evolution of Antarctic and deep-sea faunas. In Ernst, W. G. & Morin, J. G. (eds) The Environment of the Deep Sea, 325–56. Englewood Cliffs: Prentice Hall.Google Scholar
Lochman, C. & Hu, Chung–Hung. 1960. Upper Cambrian faunas from the northwest Wind River Mountains, Wyoming, Part I. J PALEONTOL 34, 793834.Google Scholar
Ludvigsen, R. & Tuffnell, P. A. 1983. A revision of the Ordovician olenid trilobite Triarthrus Green. GEOL MAG 120, 567–77.CrossRefGoogle Scholar
Lydka, K. 1987. Lithology of the non-metamorphosed Precambrian and lowermost Cambrian sediments of the peribaltic syneclise. In Rozanov, A. Yu & Lydka, K.Palaeogeography and lithology of the Vendian and Cambrian of the western east European platform. Contribution of the Soviet–Polish Working Group on the Precambrian–Cambrian Boundary problem, 6876. Wydawnictwa Geologiczne Warsaw.Google Scholar
Madsen, F. J. 1961. On the zoogeography and origin of the abyssal fauna, in view of the knowledge of the Porcellanasteridae. GALATHEA REP 4, 177215.Google Scholar
Mansuy, H. 1912. Paleontologie. Etude geologique du Yun–Nan Oriental. MEM SERV GEOL INDOCH 1(2), 1146.Google Scholar
Mapes, R. H. 1987. Upper Paleozoic cephalopod mandibles: frequency of occurrence, modes of preservation, and paleoecological implications. J PALEONTOL 61, 521–38.CrossRefGoogle Scholar
McGhee, G. R. 1982. The Frasnian–Famennian extinction event: A preliminary analysis of the Appalachian marine ecosystems. SPEC PAP GEOL SOC AM 190, 491500.Google Scholar
McKinney, M. L. 1986. Ecological causation of heterochrony: a test and implications for evolutionary theory. PALEOBIOLOGY 12, 282–9.CrossRefGoogle Scholar
McLean, J. H. 1981. The Galapagos Rift limpet Neomphalus: Relevance to understanding the evolution of a major Paleozoic–Mesozoic radiation. MALACOLOGIA 21, 291336.Google Scholar
McLean, J. H. 1988. New archaeogastropod limpets from hydrothermal vents; superfamily Lepetodrilacea. I. Systematic descriptions. PHILOS TRANS R SOC LONDON B319, 182.Google Scholar
McNamara, K. J. 1982. Heterochrony and phylogenetic trends. PALEOBIOLOGY 8, 130–42.CrossRefGoogle Scholar
Menzies, R. J., George, R. Y. & Rowe, G. T. 1973. Abyssal environment and ecology of the world oceans. New York: Wiley Interscience.Google Scholar
Menzies, R. J. & Imbrie, J. 1958. On the antiquity of the deep sea bottom fauna. OIKOS 9, 192210.CrossRefGoogle Scholar
Moreno–Eiris, E. 1987. Los monticules arrecifales de algas y arqueociatos del Cambrico Inferior de Sierra Morena. IV: Bioestratigrafia y sistemactica de los Arqueociatos. BOLN GEOL MIN ESP ANA 98, 729–79.Google Scholar
Neale, J. W. 1986. Ostracod speciation, geological events and periodicity. BULL CENT RECH ELF–AQUITAINE 10, 579–92.Google Scholar
Nelson, C. A. 1963. Stratigraphic range of Ogygopsis. J PALEONTOL 37, 244–8.Google Scholar
Nelson, C. A. 1976. Late Precambrian–early Cambrian stratigraphic and faunal succession of eastern California and the Precambrian–Cambrian boundary. In Moore, J. N. & Fritsche, A. E. (eds) Depositional environments of Lower Paleozoic rocks in the White–Inyo Mountains, Inyo County, California, 31–2. Los Angeles: SEPM, Pacific Section.Google Scholar
Newman, W. A. 1979. A new scalpellid (Cirripedia); a Mesozoic relic living near an abyssal hydrothermal spring. TRANS SAN DIEGO SOC NAT HIST 19, 153–67.Google Scholar
Newman, W. A. 1985. The abyssal hydrothermal vent invertebrate fauna: a glimpse of antiquity? BULL BIOL SOC WASH 6, 231–42.Google Scholar
Nicol, D. 1988. Some marine pelecypod families and genera that are relicts or living fossils. TULANE STUD GEOL PALEONTOL 21, 117–8.Google Scholar
Ochman, H. & Wilson, A. C. 1987. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J MOL EVOL 26, 7486.CrossRefGoogle ScholarPubMed
Odin, G. A., Gale, N. H. & Doré, F. 1985. Radiometric dating of late Precambrian times. In Snelling, N. J. (ed) The Chronology of the Geological Record. GEOL SOC LONDON MEM 10, 6572.CrossRefGoogle Scholar
Oji, T. 1985. Early Cretaceous Isocrinus from northeast Japan. PALAEONTOLOGY 28, 629–42.Google Scholar
Owen, A. W. 1986. The uppermost Ordovician (Hirnantian) trilobites of Girvan, SW Scotland with a review of coeval trilobite faunas. TRANS R SOC EDINBURGH EARTH SCI 77, 231–9.CrossRefGoogle Scholar
Palmer, A. R. & Halley, R. B. 1979. Physical stratigraphy and trilobite biostratigraphy of the Carrara Formation (Lower and Middle Cambrian) in the southern Great Basin. US GEOL SURV PROF PAP 1047, v, 1131.Google Scholar
P'an, K. 1957. On the discovery of Homopoda from South China. ACTA PALAEONTOL SIN 5, 523–6.Google Scholar
Peel, J. S. 1984. Autecology of Silurian gastropods and monoplacophorans. SPEC PAP PALAEONTOL 32, 165–82.Google Scholar
Pickett, J. & Rigby, J. K. 1983. Sponges from the early Devonian Garra Formation, New South Wales. J PALEONTOL 57, 720–41.Google Scholar
Yi, Qian & Bengtson, S. in press. palaeontology and biostratigraphy of the early Cambrian Meishucun Stage in Yunnan Province, south China. FOSSILS STRATA.Google Scholar
Randolph, R. L. 1973. Paleontology of the Swasey Limestone, Drum Mountains, west central Utah. Unpublished M.Sc thesis, University of Utah.Google Scholar
Rasetti, F. 1946. Early Upper Cambrian trilobites from western Gaspe. J PALEONTOL 20, 442–62.Google Scholar
Rasetti, F. 1948. Middle Cambrian trilobites from the conglomerates of Quebec (Exclusive of the Ptychopariidae). J PALEONTOL 22, 315–39.Google Scholar
Repina, L. N. 1986. Global correlation of the Lower Cambrian stage subdivisions according to trilobites. In Cambrian biostratigraphy and palaeontology of North Asia. AKAD NAUK SSSR, SIB OTD TRUDY 669, 424 (in Russian).Google Scholar
Resser, C. E. 1929. New Lower and Middle Cambrian Crustacea. PROC US NAT MUS 76(9), 118.CrossRefGoogle Scholar
Resser, C. E. 1938a. Middle Cambrian fossils from Pend Oreille Lake, Idaho. SMITHSONIAN MISC COLLNS 97(3), 112.Google Scholar
Resser, C. E. 1938b. Cambrian System (restricted) of the southern Appalachians. SPEC PAP GEOL SOC AM 15, vii, 1140.Google Scholar
Resser, C. E. 1939. The Spence Shale and its fauna. SMITHSONIAN MISC COLLNS 97(12), 129.Google Scholar
Resser, C. E. & Howell, B. F. 1938. Lower Cambrian Olenellus Zone of the Appalachians. BULL GEOL SOC AM 49, 195248.CrossRefGoogle Scholar
Richter, R. & Richter, E. 1927. Eine Crustacee (Isoxys carbonelli n.sp.) in den Archaeocyathus–Bildungen der Sierra Morena und ihre stratigraphische Beurteilung. SENCKENBERGIANA 9, 188–95.Google Scholar
Rigby, J. K. 1978. Porifera of the Middle Cambrian Wheeler Shale, from the Wheeler Amphitheater, House Range, in western Utah. J PALEONTOL 52, 1325–45.Google Scholar
Rigby, J. K. 1980. The new Middle Cambrian sponge Vauxia magna from the Spence Shale of northern Utah and taxonomic position of the Vauxiidae. J PALEONTOL 54, 234–40.Google Scholar
Rigby, J. K. 1983. Sponges of the Middle Cambrian Marjum Limestone from the House Range and Drum Mountains of western Millard County, Utah. J PALEONTOL 57, 240–70.Google Scholar
Rigby, J. K. 1986a. Cambrian and Silurian sponges from North Greenland. RAPP GRON GEOL UNDERS 132, 5163.Google Scholar
Rigby, J. K. 1986b. Sponges of the Burgess Shale (Middle Cambrian) British Columbia. PALAEONTOL CAN 2, 1105.Google Scholar
Rigby, J. K. 1987. Early Cambrian sponges from Vermont and Pennsylvania, the only ones described from North America. J PALEONTOL 61, 451–61.CrossRefGoogle Scholar
Rigby, J. K. & Webby, B. D. 1988. Late Ordovician sponges from the Malongulli Formation of central New South Wales, Australia. PALAEONTOL AM 56, 1147.Google Scholar
Robison, R. A. 1969. Annelids from the Middle Cambrian Spence Shale of Utah. J PALEONTOL 43, 1169–73.Google Scholar
Robison, R. A. 1984a. Cambrian Agnostida of North America and Greenland. Part I. Ptychagnostidae. PALEONTOL CONTRIB UNIV KANSAS PAP 109, 159.Google Scholar
Robison, R. A. 1984b. New occurrences of the unusual trilobite Naraoia from the Cambrian of Idaho and Utah. PALEONTOL CONTRIB UNIV KANSAS PAP 112, 18.Google Scholar
Robison, R. A. 1985. Affinities of Aysheaia (Onychophora), with description of a new Cambrian species. J PALEONTOL 59, 226–35.Google Scholar
Robison, R. A. & Richards, B. C. 1981. Larger bivalve arthropods from the Middle Cambrian of Utah. PALEONTOL CONTRIB UNIV KANSAS PAP 106, 119.Google Scholar
Rowell, A. J. 1986. The distribution and inferred larval dispersion of Rhondellina dorei: a new Cambrian brachiopod (Acrotretida). J PALEONTOL 60, 1056–65.CrossRefGoogle Scholar
Sanders, H. L. & Allen, J. A. 1977. Studies on the deep sea Protobranchia (Bivalvia); the family Tindariidae and the genus Pseudotindaria. BULL MUS COMP ZOOL HARVARD 148, 2359.Google Scholar
Satterthwait, D. F. 1976. Paleobiology and paleoecology of Middle Cambrian algae from Western North America. Unpublished Ph.D. Thesis, Los Angeles, University of California.Google Scholar
Schofield, S. J. 1922. Relationship of the Precambrian (Beltian) terrain to the Lower Cambrian strata of southeastern British Columbia. MUS BULL CAN DEP MINES GEOL SURV VICTORIA MEM MUS 35 (GEOL SER 42), 115.Google Scholar
Sepkoski, J. J. 1987. Environmental trends in extinction during the Paleozoic. SCIENCE (WASHINGTON) 235, 64–6.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. & Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time. In Valentine, J. W. (ed.) Phanerozoic Diversity Patterns; profiles in macroevolution, 153–90. Princeton: Princeton University Press.Google Scholar
Sepkoski, J. J. & Sheehan, P. M. 1983. Diversification, faunal change and community replacement during the Ordovician radiations. In Tevesz, M. J. S. & McCall, P. L. (eds) Biotic Interactions in Recent and Fossil Benthic Communities, 673717. New York: Plenum.CrossRefGoogle Scholar
Shaw, A. B. 1954. Lower and lower Middle Cambrian faunal succession in northwestern Vermont. BULL GEOL SOC AM 65, 1033–46.CrossRefGoogle Scholar
Sheehan, P. 1977. Ordovician and Silurian brachiopods from graptolitic shales and related deep-water argillaceous rocks. LETHAIA 10, 201–3.CrossRefGoogle Scholar
Simms, M. 1986. Contrasting lifestyles in Lower Jurassic crinoids: a comparison of benthic and pseudopelagic Isocrinida. PALAEONTOLOGY 29, 475–93.Google Scholar
Simpson, E. L. & Sundberg, F. A. 1987. Early Cambrian age for synrift deposits of the Chilhowee Group of southwestern Virginia. GEOLOGY 15, 123–6.2.0.CO;2>CrossRefGoogle Scholar
Sorauf, J. E. & Pedder, A. E. H. 1986. Late Devonian rugose corals and the Frasnian–Famennian crisis. CAN J EARTH SCI 23, 1265–87.CrossRefGoogle Scholar
Spizharski, T. N., Zhuravleva, I. T., Repina, I. N., Rozanov, A. Yu., Tchernysheva, N. Ye & Ergaliev, G. H. 1986. The stage scale of the Cambrian System. GEOL MAG 123, 387–92.CrossRefGoogle Scholar
Sprinkle, J. 1976. Biostratigraphy and paleoecology of Cambrian echinoderms from the Rocky Mountains. BRIGHAM YOUNG UNIV GEOL STUD 23, 6173.Google Scholar
Stewart, J. H. & Palmer, A. R. 1967. Callaghan Window, a newly discovered part of the Roberts thrust, Toiyabe Range, Lander County, Nevada. US GEOL SURV PROF PAP 575–D, 5663.Google Scholar
Stitt, J. H. 1977. Late Cambrian and earliest Ordovician trilobites Wichita Mountains area, Oklahoma. BULL OKLAHOMA GEOL SURV 124, 179.Google Scholar
Stürmer, W. & Bergström, J. 1976. The arthropods Mimetaster and Vachonisia from the Devonian Hunsrück Shale. PALÄONTOL Z 50, 78111.Google Scholar
Weiguo, Sun & Xianguang, Hou 1987a. Early Cambrian medusae from Chengjiang, Yunnan, China. ACTA PALAEONTOL SIN 26, 257–71 (In Chinese, with English abstract.)Google Scholar
Weiguo, Sun & Xianguang, Hou 1987b. Early Cambrian worms from Chengjiang, Yunnan, China: Maotianshania gen. nov. ACTA PALAEONTOL SIN 26, 299305. (In Chinese, with English abstract.)Google Scholar
Taylor, M. E. & Cook, H. E. 1976. Continental shelf and slope facies in the Upper Cambrian and lowest Ordovician of Nevada. BRIGHAM YOUNG UNIV GEOL STUD 23, 181214.Google Scholar
Taylor, K. & Rushton, A. W. A. 1971. The pre-Westphalian geology of the Warwickshire coalfield, with a description of three boreholes in the Merevale area. BULL GEOL SURV GB 35, vii, 1150.Google Scholar
Tunnicliffe, V. 1988. Biogeography and evolution of hydrothermalvent fauna in the eastern Pacific Ocean. PROC R SOC LONDON B233, 347–66.Google Scholar
Vale, F. K. & Rex, M. A. 1988. Repaired shell damage in deep-sea prosobranch gastropods from the western North Atlantic. MALACOLOGIA 28, 6579.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation. An ecological history of life. Princeton: University Press.CrossRefGoogle Scholar
Vologdin, A. G. 1962. The oldest algae of the Soviet Union. Moscow: Izd. Akad. Nauk. SSSR (in Russian).Google Scholar
Walcott, C. D. 1890. The fauna of the Lower Cambrian or Olenellus zone. REP US GEOL SURV 10, 509760.Google Scholar
Ward, P. D. & Signor, P. W. 1983. Evolutionary tempo in Jurassic and Cretaceous ammonites. PALEOBIOLOGY 9, 183–98.CrossRefGoogle Scholar
Webby, B. D., Qizheng, Wang & Mills, K. J. 1988. Upper Cambrian and basal Ordovician trilobites from western New South Wales. PALAEONTOLOGY 31, 905–38.Google Scholar
Westrop, S. R. & Ludvigsen, R. 1987. Biogeographic control of trilobite mass extinction at an Upper Cambrian “biomere” boundary. PALEOBIOLOGY 13, 8499.CrossRefGoogle Scholar
Whittington, H. B. 1975. Trilobites with appendages from the Middle Cambrian, Burgess Shale, British Columbia. FOSSILS STRATA 4, 97136.CrossRefGoogle Scholar
Whittington, H. B. 1977. The Middle Cambrian trilobite Naraoia, Burgess Shale, British Columbia. PHILOS TRANS R SOC LONDON B280, 409–43.Google Scholar
Whittington, H. B. 1980. Exoskeleton, moult stage, appendage morphology and habits of the Middle Cambrian trilobite Olenoides serratus. PALAEONTOLOGY 23, 171204.Google Scholar
Whittington, H. B. 1985. The Burgess Shale. New Haven: Yale University Press.Google Scholar
Whittington, H. B. & Briggs, D. E. G. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. PHILOS TRANS R SOC LONDON B309, 569609.Google Scholar
Wiedmann, L. A., Feldmann, R. M., Lee, D. E. & Zinsmeister, W. J. 1988. Brachiopoda from the La Meseta Formation (Eocene), Seymour Island, Antarctica. MEM GEOL SOC AM 169, 449–57.Google Scholar
Wilson, G. D. F. & Hessler, R. R. 1987. Speciation in the deep sea. ANN REV ECOL SYSTEM 18, 185207.CrossRefGoogle Scholar
Liwen, Xiang et al. 1981. The Cambrian system of China. Stratigraphy of China 4, 1210. Beijing: Geological Publishing House.Google Scholar
Zhao, Yue 1987. The discovery of Tannuolina and Lapworthella from Lower Cambrian in Meishucun (Yunnan) and Maidiping (Sichuan) sections. PROF PAP STRAT PALAEONTOL 16, 173–80. (In Chinese, with English summary.)Google Scholar
Zenkevitch, L. A. & Birstein, J. A. 1960. On the problem of the antiquity of the deep-sea fauna. DEEP-SEA RES 7, 1023.Google Scholar
Wentang, Zhang 1987. World's oldest Cambrian trilobites from eastern Yunnan. In Stratigraphy and Palaeontology of Systematic Boundaries in China, Precambrian–Cambrian Boundary (1), 118.Google Scholar
Wentang, Zhang & Xianguang, Hou 1985. Preliminary notes on the occurrence of the unusual trilobite Naraoia in Asia. ACTA PALAEONTOL SIN 24, 591–5. (In Chinese, with English abstract.)Google Scholar
Zhiyi, Zhou & Dean, W. T. 1986. Ordovician trilobites from Chedao, Gansu province, north-west China. PALAEONTOLOGY 29, 743–80.Google Scholar
Zinsmeister, W. J. & Feldmann, R. M. 1984. Cenozoic high latitude heterochroneity of southern hemisphere marine faunas. SCIENCE (WASHINGTON) 224, 281–3.CrossRefGoogle ScholarPubMed
Zonenshain, L. P., Kuzmir, M. I. & Kononov, M. V. 1985. Absolute reconstructions of the Paleozoic oceans. EARTH PLANET SCI LETT 74, 103–16.CrossRefGoogle Scholar