To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Culture arises from the interaction of many individuals sharing knowledge and collaborating over time, and, because of this, culture must be studied using different methods to those that are commonly employed in many areas of psychology. The majority of our understanding of the social learning underpinning culture is generalised from ‘dyadic’ experiments, in which a single participant observes a single model, and as a result leaves questions about the relationship between the individual- and group-level unaddressed. Such questions include how different forms of cultural information spread across the population and how individuals work together to produce cultural products. Diffusion experiments present a method for such dynamics to be examined. This chapter reviews the varieties of diffusion methods available and the strengths and weaknesses each type of diffusion design provides in answering questions about cultural evolution. It also reviews recent innovations in studying the spread of culture via social relations using social network analyses. We argue that social network analyses could be especially useful for examining a dynamic which has hitherto not been widely considered in studying cultural evolution; that is, the feedback relationship between social structure (relations) and social learning, with copying behaviour fulfilling both a role of information exchange and a role of affiliation.
Many different claims have been made concerning the function and role of the human mirror system. This chapter first examines the question of what makes the mirror system special, and whether this particular network can be clearly distinguished from visuomotor systems in the brain. Current studies suggest it is surprisingly hard to draw clear distinctions between mirroring and visuomotor systems. The second part then distinguishes between models for understanding, predicting and responding to social stimuli. I suggest that responding theories have been somewhat neglected, and that social responding should be considered as an important function of the mirror system, in the same way that grasping objects is an important function of the visuomotor system.
In this chapter we will introduce a new theory of aesthetics in the performing arts that is based on communication via movement. With a specific focus on dance performances, we propose that movement messages are communicated from performer to spectator. We suggest that the aesthetic impact of dance (and perhaps all performing arts) is a result of successful message-passing between performer and spectator. We show how Grice’s four maxims of successful conversation can be applied to the performance situation. We propose that communication during a performance is interactive and bidirectional. Information being passed from performer to audience is primarily communicated through observed movement kinematics and choreographic structure: we will distinguish between the processing of syntactic information of postures, movements and movement sequences, on the one hand, and processing of semantics of movement intentions, on the other hand. Aesthetic processing of the movement message will further depend on the spectator’s visual and motor expertise. In a dimensional model of aesthetic appreciation of dance, we distinguish between processing fluency and novelty/complexity of information as two distinct sources of movement aesthetics that relate to specific brain mechanisms. Aesthetic judgements of preference and interest will reflect a combination of both implicit processing fluency and the explicit aesthetic strategy of the observer. Our theory differs from existing accounts of aesthetic experience in that it emphasises successful communication as the primary source of aesthetic experience. Appreciation of dance in this context is neither just a function of dance movement features (as an objectivist aesthetics suggests) nor of the spectator’s processing fluency (as a subjectivist aesthetics suggests). Instead, our emphasis on communication implies some level of experience-sharing between dancer and spectator.
Social cognition is composed of at least two major types of processes – bottom up and top down. Bottom-up processes are stimulus-driven, fairly automatic and fast. Top-down processes, on the other hand, require effort; they are deliberate and flexible. The mirror neuron system (MNS) is a recently discovered neural system that seems to map fairly well on bottom-up social processes. During social interactions, two individuals internally mirror each other’s actions via the MNS, hence connecting their bottom-up processes. At the same time, top-down mechanisms in each interacting person modulate the bottom-up activity. By doing so, each individual’s top-down mechanism also influences the other social agent via the bottom-up activity. Here, we discuss the two processes and how they interact with each other. We propose that the interplay between bottom-up and top-down processes creates a strong and dynamic link between the minds of two individuals and suggest a mechanistic model for how these processes may transform two minds into one functional social unit.
In this chapter we examine task representations in shared task settings like the joint (“social”) Simon task. Over the past decade, ideas pertaining to shared representations and co-representation have been advanced to account for performance in such settings (Knoblich & Sebanz, 2006; Knoblich, Butterfill, & Sebanz, 2011; Wenke et al., 2011). Here we argue that we can do without these notions. On the one hand, we show that shared representations cannot account for typical findings in shared task settings. This is the negative part. On the other hand, we show that task performance can be explained by the claim that individuals shape their individual task representations according to the needs of the shared task. This is the positive part. Consequentially, we claim that performance in shared task settings relies on shaping individual representations, not sharing common representations (Dolk et al., 2011; Dolk, Hommel, Prinz, & Liepelt, 2013).
Social mimicry is the ubiquitous tendency to copy the bodily movements, expressions, postures and speech patterns of an interaction partner. Since the 1990s social psychologists have studied this phenomenon intensively and have revealed many interesting findings about the factors that moderate mimicry and its consequences. Recently, social cognitive neuroscientists have also begun to study mimicry, with an emphasis on uncovering its mechanistic underpinnings. In particular, mechanisms that have been studied in tasks such as action observation and automatic imitation have been assumed to play a role in social mimicry. Although intuitive, the notion that these mechanisms are common to both tightly controlled laboratory tasks and more naturalistic social mimicry is an assumption that requires empirical investigation. Here, I present recent work that begins to provide this missing empirical link. I contextualize this work with respect to both the social psychology and the cognitive neuroscience literatures.
Human groups differ not only in the types of tools and artifacts they produce, but also in the ways in which they interact with and behave around each other. Social learning is key to explaining these differences between human groups. However, to date, research on cultural transmission has focused predominately on how imitation and other forms of social learning enable children to learn about the physical world. While this research has yielded important insights into the nature of the cultural transmission process, the picture it provides is incomplete. Here, inspired by anthropological perspectives, we adopt a broader view of culture and emphasize that a group’s culture is not only composed of the tools and artifacts it produces but also the values, norms, attitudes, opinions and beliefs that it holds dear. Using this broader definition of culture, we review the social psychological literature on how children learn about the social world through copying those around them. We hope this integrative review highlights the importance of the more social aspects of cultural transmission and offers a broader view of human culture that will open up new avenues for future research.
Despite more than 100 years of research, there is no agreement among experts as to whether or not primates can imitate. Part of the problem is that there is little agreement as to what constitutes an example of “imitation.” Nevertheless, recent research provides compelling evidence for both continuities and discontinuities in the psychological faculty that mediates imitation performance. A number of studies have shown that monkeys and apes are capable of copying familiar responses, but it is questionable whether they can also copy novel responses, particularly those involving novel tool-related actions. These results have been interpreted to mean that primates cannot engage in “imitation learning” or novel imitation. Yet there is some evidence showing that monkeys can imitate novel “cognitive” rules (i.e., ordinal rules of the form Apple-Boy-Cat) independently of copying specific motor responses. Rather than suggesting that monkeys and other primates are poor imitators, these results suggest that primates can learn novel cognitive rules but not novel motor rules, possibly because such skills require derived neural specializations in the Parietal Lobe linking social and physical cognitive skills. If true, such evidence represents an important discontinuity between the imitation skills of human and non-human primates with significant implications for human cognitive evolution.
A range of behavioural and neuroimaging evidence demonstrates that we mirror observed human action in our motor systems to a greater extent than similar non-biological movement. This chapter reviews such evidence, considering the form and kinematic features of observed stimuli to which mirror mechanisms are sensitive. It subsequently considers the role of this biological tuning in our interactions with, and processing of, humans relative to inanimate devices, in the context of functions likely to be supported by mirror mechanisms. It notes that in contrast with common assumptions, biological tuning is unlikely to reflect increased inferential processing about mental states of observed humans. It considers that biological tuning is more likely to influence our imitation and perception of human and inanimate movements. The final section examines how biological tuning can be integrated with evidence that mirror mechanisms are part of a wider domain-general system adapted for action control, mapping motor codes onto observed events from both our social and inanimate environments.
Expertise in the motor domain is something we recognize almost instantaneously in other people, whether a gymnast performing a double layout with a twist, a basketball player slam dunking the ball, a Super-G skier descending a steep course at 80 mph, or a dancer executing 11 consecutive spins on one leg without stopping. While we might be able to readily recognize expertise in others, the degree to which action experts can coordinate or move their bodies in profoundly different ways to non-experts raises intriguing questions for those interested in shared representations between self and other in our social world. Namely, how does an observer’s ability to embody an action impact how she perceives that action, and how might perception change as further experience with the observed action is acquired? In this chapter, we address these questions by considering empirical research that explores the relationship between an actor and an observer’s motor abilities, and how expertise impacts this relationship.
In many social settings, people are expected to respond to and anticipate the actions of others. Everyday examples include team sports, card games and normal conversations. Clearly, an important aspect of social cognition is thinking about and planning for other agents’ actions. But what processes are involved in thinking about others’ actions, as opposed to one’s own actions? This chapter introduces some broad ideas about the possible sensorimotor foundations of action representation in both self and other, drawing on recent findings from the fields of cognitive psychology and cognitive neuroscience. The chapter is organized around three themes: (1) how action experience shapes the representation of others’ actions; (2) action affordances and the representation of space in relation to self and other; and (3) distinguishing self and other.
A key challenge in the study of the social brain resides not only in determining how psychological states and processes map onto patterns of brain activity but also how this activity is modulated by shared representations, social compositions and social behaviors. The past 20 years have seen the growth of neuroimaging methods for studying neural aspects of shared representations, embodied cognition and the social brain in normal, waking humans. We discuss the intimate relationship between theory and methods; we discuss a set of considerations to guide the interpretation or understanding of data from neuroimaging studies; and we discuss the importance of using converging methods to dissect the social brain.
Evidence from cognitive psychology and neuroscience has been accumulated suggesting that perception and execution of action are tightly linked. The observation of an action leads to a direct activation of the corresponding motor representation in the observer, suggesting that perception and action rely on a ‘shared representational system’. Moreover, the observation of an action can lead to automatic imitation. However, if perception and action can lead to the concurrent activation of different motor plans, a fundamental problem is how we are able to distinguish between motor representations that have been internally generated by our own intention and those that have been triggered by observing others’ actions. In other words, how can we avoid automatic imitation? In the present chapter, we will report recent evidence suggesting that a crucial component of such shared representation systems is self–other distinction and that the control of shared representations involves brain areas that constitute key nodes in high-level socio-cognitive processes such as agency attribution, perspective taking and mentalizing.