We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With this groundbreaking text, discover how wireless artificial intelligence (AI) can be used to determine position at centimeter level, sense motion and vital signs, and identify events and people. Using a highly innovative approach that employs existing wireless equipment and signal processing techniques to turn multipaths into virtual antennas, combined with the physical principle of time reversal and machine learning, it covers fundamental theory, extensive experimental results, and real practical use cases developed for products and applications. Topics explored include indoor positioning and tracking, wireless sensing and analytics, wireless power transfer and energy efficiency, 5G and next-generation communications, and the connection of large numbers of heterogeneous IoT devices of various bandwidths and capabilities. Demo videos accompanying the book online enhance understanding of these topics. Providing a unified framework for wireless AI, this is an excellent text for graduate students, researchers, and professionals working in wireless sensing, positioning, IoT, machine learning, signal processing and wireless communications.
The new research field of Ambient/Active Assisted Living (AAL) is quickly evolving. Ambient Integrated Robotics provides an easy-to-understand medical perspective to architects, designers, and engineers, bridging the different disciplines and showing how they fuse together to create the future of AAL technology. Using robotics as an example, the book illustrates how embedding its subsystems results in unique ambient technology that can be used to help people, particularly in adapting to the needs of the unwell and elderly populations. You will be provided with the knowledge and tools to contribute to the future of AAL. The Cambridge Handbooks on Construction Robotics series gives professionals, researchers, lecturers, and students basic conceptual and technical skills and strategies to manage, research, or teach the implementation of advanced automation, and robot-technology-based processes and technologies in construction. Books discuss progress in robot systems theory and demonstrates their integration using real applications and projections.
In this chapter, we present a background on the state of the art regarding Ambient/Active Assisted Living (AAL) related topics (i.e., Ambient Sensing, Medical Technology, and Geriatrics and Sociology). Later in the book we present the basis for current, new, and common technologies on the market (presented in Chapter 4), and ongoing research in AAL (examples presented in Chapter 5). The presented interdisciplinary content consists of social, engineering, medical, electrical, and mechatronics science, and together, they encompass the field of AAL, as well as eHealth.
In this chapter, several technological, or to be more detailed, robotic solutions from different companies and developers will be presented. This allows an overview of the state of Ambient/Active Assisted Living (AAL), which can be categorized into home care (for independent living in old age), social interaction, health and wellness, interaction and learning, working, and mobility.
In this chapter, a possible outlook into the future is provided. Considering the newest technology on the market in the young research field of AAL (see Chapter 4), and the youngest research projects (see Chapter 5), new possibilities will exist in the future design of buildings. Buildings mainly consist of four walls and a ceiling, with water and electrical supply. However, with increasing demand for assistive technologies, and with an increasing technology readiness level (TRL) [187] for assistive technologies, there will be a time when this new technology approach will fuse with future building design and construction.
Aging: no one wants to, but everyone does. Many people are scared of aging mostly because they think of ending up in a bed, doing nothing other than staring at the ceiling and depending on other people who have to sacrifice their free time and strength to care for them. Under these circumstances, not only is the quality of life gone, but also the relationship with relatives can suffer because someone might become a burden.
Scared about this fate, the elderly (and disabled) sometimes wish for suicide or euthanasia. Many need help if their independence is affected because of advanced age. Additionally, euthanasia is illegal in most modern countries.
In this chapter, several projects will be presented in order to show the current state of the art in the research and development of the integration of ambient integrated robotics. The projects focus especially on the support of the elderly and fragile people. The main aim of each single project is to keep the user physically and mentally active in order to slow down the process of senility. All the tasks that the user cannot do alone anymore must be supported by the technology. Here however, the main difficulty in each presented project is to establish the system in a way that only the minimal necessary support is offered, otherwise the user could become too inactive leading to an accelerated process of senility.
As society ages, the building stock needs to be upgraded. A proper Ambient/Active Assisted Living (AAL) implementation needs a holistic approach; consequently, the environment itself needs to be adapted to the new needs of its inhabitants. Spatially and functionally, homes, and generally the built environment, may not meet the requirements of the elderly anymore. Demographic changes and the effects of an aging society also affect buildings and the built environment. Rapid refurbishment processes, quick adaptation protocols, and appropriate maintenance procedures become a necessity in order to not disturb the elderly and provide them with comfortable and functional homes and spaces. This is the main motivation behind the message of this chapter, which deals with the issue of how to adapt the living built environment for the elderly by use of fast and unobtrusive procedures. Moreover, a method for the assessment of strategies for built environment upgrading for AAL (BeuAAL) in early stages is presented. This chapter will help encouraging several stakeholders to accomplish building renovations for the elderly using robotics and automated tools.