To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An enormous amount has happened in quantum information science in the 10 years since the first edition of this book, and in this afterword we cannot summarize even a tiny fraction of that work. But a few especially striking developments merit comment, and may perhaps whet your appetite for more.
Perhaps the most impressive progress has been in the area of experimental implementation. While we are still many years from building large-scale quantum computers, much progress has been made. Superconducting circuits have been used to implement simple two-qubit quantum algorithms, and three-qubit systems are nearly within reach. Qubits based on nuclear spins and single photons have been used, respectively, to demonstrate proof-of-principle for simple forms of quantum error correction and quantum simulation. But the most impressive progress of all has been made with trapped ion systems, which have been used to implement many two- and three-qubit algorithms and algorithmic building blocks, including the quantum search algorithm and the quantum Fourier transform. Trapped ions have also been used to demonstrate basic quantum communication primitives, including quantum error correction and quantum teleportation.
A second area of progress has been in understanding what physical resources are required to quantum compute. Perhaps the most intriguing breakthrough here has been the discovery that quantum computation can be done via measurement alone. For many years, the conventional wisdom was that coherent superposition-preserving unitary dynamics was an essential part of the power of quantum computers.
Computer programming is an art form, like the creation of poetry or music.
– Donald Knuth
The most spectacular discovery in quantum computing to date is that quantum computers can efficiently perform some tasks which are not feasible on a classical computer. For example, finding the prime factorization of an n-bit integer is thought to require exp(Θ(n⅓ log⅔n)) operations using the best classical algorithm known at the time of writing, the so-called number field sieve. This is exponential in the size of the number being factored, so factoring is generally considered to be an intractable problem on a classical computer: it quickly becomes impossible to factor even modest numbers. In contrast, a quantum algorithm can accomplish the same task using O(n2 log n log log n) operations. That is, a quantum computer can factor a number exponentially faster than the best known classical algorithms. This result is important in its own right, but perhaps the most exciting aspect is the question it raises: what other problems can be done efficiently on a quantum computer which are infeasible on a classical computer?
Cryptography is the art of enabling two parties to communicate in private. For example, a consumer wishing to make a purchase on the internet wants to transmit their credit card number over the internet in such a way that only the company they are purchasing from gains access to the number. Rather more ominously, in wartime each of the warring parties wants the means to carry on private communication. To achieve privacy a cryptographic protocol or cryptosystem is used. Effective cryptosystems make it easy for parties who wish to communicate to do so, but make it very difficult for third parties to ‘eavesdrop’ on the contents of the conversation.
A particularly important class of cryptosystems are the public key cryptosystems. The basic idea of public key cryptography is illustrated by the analogy depicted in Figure A5.1. Alice sets up a mailbox with the property that anybody can send her mail, by putting it into the mailbox, but only she can retrieve mail out of the mailbox. To achieve this she gives the mailbox two doors. On top of the mailbox is a locked trap door. Any person able to open the trap door can drop mail into the box. However, the chute from the trap door into the box is one way, so they can't reach into the box and fish mail out. Alice makes the key to the trapdoor freely available to the public – it is a public key – so that she can receive mail from absolutely anybody.
Computers in the future may weigh no more than 1.5 tons.
– Popular Mechanics, forecasting the relentless march of science, 1949
I think there is a world market for maybe five computers.
– Thomas Watson, chairman of IBM, 1943
Quantum computation and quantum information is a field of fundamental interest because we believe quantum information processing machines can actually be realized in Nature. Otherwise, the field would be just a mathematical curiosity! Nevertheless, experimental realization of quantum circuits, algorithms, and communication systems has proven extremely challenging. In this chapter we explore some of the guiding principles and model systems for physical implementation of quantum information processing devices and systems.
We begin in Section 7.1 with an overview of the tradeoffs in selecting a physical realization of a quantum computer. This discussion provides perspective for an elaboration of a set of conditions sufficient for the experimental realization of quantum computation in Section 7.2. These conditions are illustrated in Sections 7.3 through 7.7, through a series of case studies, which consider five different model physical systems: the simple harmonic oscillator, photons and nonlinear optical media, cavity quantum electrodynamics devices, ion traps, and nuclear magnetic resonance with molecules. For each system, we briefly describe the physical apparatus, the Hamiltonian which governs its dynamics, means for controlling the system to perform quantum computation, and its principal drawbacks.
Classical information theory is mostly concerned with the problem of sending classical information – letters in an alphabet, speech, strings of bits – over communications channels which operate in accordance with the laws of classical physics. How does the picture change if we can build quantum-mechanical communications channels? Can we transmit information more efficiently? Can we make use of quantum mechanics to transmit secret information without being eavesdropped on? These are just two of the questions we may ask when communication channels are allowed to be quantum mechanical. This redefinition of what a channel is causes us to go back and re-examine the fundamental questions motivating classical information theory, in the search for new answers. This chapter surveys what is known about quantum information theory, including some surprising and intriguing possibilities made possible by quantum communication channels.
Quantum information theory is motivated by the study of communications channels, but it has a much wider domain of application, and it is a thought-provoking challenge to capture in a verbal nutshell the goals of the field. As described in Section 1.6, we can identify three fundamental goals uniting work on quantum information theory: to identify elementary classes of static resources in quantum mechanics (which we identify as types of ‘information’); to identify elementary classes of dynamical processes in quantum mechanics (identified as types of ‘information processing’); and to quantify resource tradeoffs incurred performing elementary dynamical processes.
Until now we have dealt almost solely with the dynamics of closed quantum systems, that is, with quantum systems that do not suffer any unwanted interactions with the outside world. Although fascinating conclusions can be drawn about the information processing tasks which may be accomplished in principle in such ideal systems, these observations are tempered by the fact that in the real world there are no perfectly closed systems, except perhaps the universe as a whole. Real systems suffer from unwanted interactions with the outside world. These unwanted interactions show up as noise in quantum information processing systems. We need to understand and control such noise processes in order to build useful quantum information processing systems. This is a central topic of the third part of this book, which begins in this chapter with the description of the quantum operations formalism, a powerful set of tools enabling us to describe quantum noise and the behavior of open quantum systems.
What is the distinction between an open and a closed system? A swinging pendulum like that found in some mechanical clocks can be a nearly ideal closed system. A pendulum interacts only very slightly with the rest of the world – its environment – mainly through friction. However, to properly describe the full dynamics of the pendulum and why it eventually ceases to move one must take into account the damping effects of air friction and imperfections in the suspension mechanism of the pendulum.
Understanding some elementary number theory is necessary if we are to understand cryptosystems and how quantum computers can be used to break them. In this appendix we review some basic facts about number theory.
Fundamentals
Let's start off by agreeing about a few conventions for nomenclature and notation. The set of integers is the set {…, −2, −1, 0, 1, 2, …}, denoted Z. We may occasionally refer to the natural numbers, meaning non-negative integers, but more often we'll say non-negative integer or positive integer, in order to make the distinction between the case when zero is included, and when zero is not included.
Suppose n is an integer. An integer d divides n (written d|n) if there exists an integer k such that n = dk. We say in this case that d is a factor or divisor of n. Notice that 1 and n are always factors of n. When d does not divide (is not a factor of) n we write d∤n. For example, 3|6 and 3|18, but 3∤|5 and 3∤7.
Exercise A4.1: (Transitivity) Show that if a|b and b|c then a|c.
Exercise A4.2: Show that if d|a and d|b then d also divides linear combinations of a and b, ax + by, where x and y are integers.
Exercise A4.3: Suppose a and b are positive integers. Show that if a|b then a ≤ b. Conclude that if a|b and b|a then a = b.
Entropy is a key concept of quantum information theory. It measures how much uncertainty there is in the state of a physical system. In this chapter we review the basic definitions and properties of entropy in both classical and quantum information theory. In places the chapter contains rather detailed and lengthy mathematical arguments. On a first reading these sections may be read lightly and returned to later for reference purposes.
Shannon entropy
The key concept of classical information theory is the Shannon entropy. Suppose we learn the value of a random variable X. The Shannon entropy of X quantifies how much information we gain, on average, when we learn the value of X. An alternative view is that the entropy of X measures the amount of uncertainty about X before we learn its value. These two views are complementary; we can view the entropy either as a measure of our uncertainty before we learn the value of X, or as a measure of how much information we have gained after we learn the value of X.
Intuitively, the information content of a random variable should not depend on the labels attached to the different values that may be taken by the random variable. For example, we expect that a random variable taking the values ‘heads’ and ‘tails’ with respective probabilities ¼ and ¾ contains the same amount of information as a random variable that takes the values 0 and 1 with respective probabilities ¼ and ¾.
What does it mean to say that two items of information are similar? What does it mean to say that information is preserved by some process? These questions are central to a theory of quantum information processing, and the purpose of this chapter is the development of distance measures giving quantitative answers to these questions. Motivated by our two questions we will be concerned with two broad classes of distance measures, static measures and dynamic measures. Static measures quantify how close two quantum states are, while dynamic measures quantify how well information has been preserved during a dynamic process. The strategy we take is to begin by developing good static measures of distance, and then to use those static measures as the basis for the development of dynamic measures of distance.
There is a certain arbitrariness in the way distance measures are defined, both classically and quantum mechanically, and the community of people studying quantum computation and quantum information has found it convenient to use a variety of distance measures over the years. Two of those measures, the trace distance and the fidelity, have particularly wide currency today, and we discuss both these measures in detail in this chapter. For the most part the properties of both are quite similar, however for certain applications one may be easier to deal with than the other. It is for this reason and because both are widely used within the quantum computation and quantum information community that we discuss both measures.
Science offers the boldest metaphysics of the age. It is a thoroughly human construct, driven by the faith that if we dream, press to discover, explain, and dream again, thereby plunging repeatedly into new terrain, the world will somehow come clearer and we will grasp the true strangeness of the universe. And the strangeness will all prove to be connected, and make sense.
– Edward O. Wilson
Information is physical.
– Rolf Landauer
What are the fundamental concepts of quantum computation and quantum information? How did these concepts develop? To what uses may they be put? How will they be presented in this book? The purpose of this introductory chapter is to answer these questions by developing in broad brushstrokes a picture of the field of quantum computation and quantum information. The intent is to communicate a basic understanding of the central concepts of the field, perspective on how they have been developed, and to help you decide how to approach the rest of the book.
Our story begins in Section 1.1 with an account of the historical context in which quantum computation and quantum information has developed. Each remaining section in the chapter gives a brief introduction to one or more fundamental concepts from the field: quantum bits (Section 1.2), quantum computers, quantum gates and quantum circuits (Section 1.3), quantum algorithms (Section 1.4), experimental quantum information processing (Section 1.5), and quantum information and communication (Section 1.6).
Quantum mechanics has the curious distinction of being simultaneously the most successful and the most mysterious of our scientific theories. It was developed in fits and starts over a remarkable period from 1900 to the 1920s, maturing into its current form in the late 1920s. In the decades following the 1920s, physicists had great success applying quantum mechanics to understand the fundamental particles and forces of nature, culminating in the development of the standard model of particle physics. Over the same period, physicists had equally great success in applying quantum mechanics to understand an astonishing range of phenomena in our world, from polymers to semiconductors, from superfluids to superconductors. But, while these developments profoundly advanced our understanding of the natural world, they did only a little to improve our understanding of quantum mechanics.
This began to change in the 1970s and 1980s, when a few pioneers were inspired to ask whether some of the fundamental questions of computer science and information theory could be applied to the study of quantum systems. Instead of looking at quantum systems purely as phenomena to be explained as they are found in nature, they looked at them as systems that can be designed. This seems a small change in perspective, but the implications are profound. No longer is the quantum world taken merely as presented, but instead it can be created.
This book provides an introduction to the main ideas and techniques of the field of quantum computation and quantum information. The rapid rate of progress in this field and its cross-disciplinary nature have made it difficult for newcomers to obtain a broad overview of the most important techniques and results of the field.
Our purpose in this book is therefore twofold. First, we introduce the background material in computer science, mathematics and physics necessary to understand quantum computation and quantum information. This is done at a level comprehensible to readers with a background at least the equal of a beginning graduate student in one or more of these three disciplines; the most important requirements are a certain level of mathematical maturity, and the desire to learn about quantum computation and quantum information. The second purpose of the book is to develop in detail the central results of quantum computation and quantum information. With thorough study the reader should develop a working understanding of the fundamental tools and results of this exciting field, either as part of their general education, or as a prelude to independent research in quantum computation and quantum information.
Structure of the book
The basic structure of the book is depicted in Figure 1. The book is divided into three parts. The general strategy is to proceed from the concrete to the more abstract whenever possible.