We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An orthodox semigroup S is termed quasi-F-orthodox if the greatest inverse semigroup homomorphic image of S1 is F-inverse. In this paper we show that each quasi-F-orthodox semigroup is embeddable into a semidirect product of a band by a group. Furthermore, we present a subclass in the class of quasi-F-orthodox semigroups whose members S are embeddable into a semidirect product of a band B by a group in such a way that B belongs to the band variety generated by the band of idempotents in S. In particular, this subclass contains the F-orthodox semigroups and the idempotent pure homomorphic images of the bifree orthodox semigroups.
A generalization of the Pastijn product is introduced so that, on the level of e-varieties and pseudoe-varieties, this product and the regular semidirect product by completely simple semigroups ‘almost always’ coincide. This is applied to give a model of the bifree objects in every e-variety formed as a regular semidirect product of a variety of inverse semigroups by a variety of completely simple semigroups that is not a group variety.
Let $\mathbf{A}$ be a $k$-element algebra whose chief factor size is $c$. We show that if $\mathbf{B}$ is in the variety generated by $\mathbf{A}$, then any abelian chief factor of $\mathbf{B}$ that is not strongly abelian has size at most ${{c}^{k-1}}$. This solves Problem 5 of The Structure of Finite Algebras, by D. Hobby and R. McKenzie. We refine this bound to $c$ in the situation where the variety generated by $\mathbf{A}$ omits type 1. As a generalization, we bound the size of multitraces of types 1, 2, and 3 by extending coordinatization theory. Finally, we exhibit some examples of bad behavior, even in varieties satisfying a congruence identity.
The associativity of the regular semidirect product of existence varieties introduced by Jones and Trotter was proved under certain condition by Reilly and Zhang. Here we estabilsh associativity in many new cases. Moreover, we prove that the regular semidirect product is right distributive with respect to the join operation. In particular, both associativity and right distriutivity yiel within the varieties of completely simple semigroups. Analogous results are obtainedj for e-pseudovarieties of finite regular semigroups.
The‘canonical embedding approach’ was introduced by the secondauthor and, subsequently, it has been applied several times to prove theembeddability of certain regular extensions by groups into semidirectproducts by groups. In the present paper this technique is generalizedso that it is suitable to handle regular extensions by inversesemigroups. As an application, B. Billhardt's embedding theorem onregular extensions of semilattices by inverse semigroups isreproved.
A common generalization of the author's embedding theorem concerning the E-unitary regular semigroups with regular band of idempotents, and Billhardt's and Ismaeel's embedding theorem on the inverse semigroups, the closure of whose set of idempotents is a Clifford semigroup, is presented. We prove that each orthodox semigroup with a regular band of idempotents, which is an extension of an orthogroup K by a group, can be embedded into a semidirect product of an orthogroup K′ by a group, where K′ belongs to the variety of orthogroups generated by K. The proof is based on a criterion of embeddability into a semidirect product of an orthodox semigroup by a group and uses bilocality of orthogroup bivarieties.
We prove that every finite, simple, surjective algebra having no proper subalgebras is either quasiprimal or affine or isomorphic to an algebra term equivalent to a matrix power of a unary permutational algebra. Consequently, it generates a minimal variety if and only if it is quasiprimal. We show also that a locally finite, minimal variety omitting type 1 is minimal as a quasivariety if and only if it has a unique subdirectly irreducible algebra.
Let S be an E-unitary regular semigroup and V a variety of bands. We prove that S can be embedded into a semidirect product of a band from V by a group if and only if S can be embedded in a canonical way into the semidirect product of the free band in V over a well-determined partial semigroup by the greatest group homomorphic image of S. Moreover, we show that every E-unitary regular semigroup with regular band of idempotents E can be embedded into a semidirect product of a band B by a group, where B belongs to the variety of bands generated by E.
Let E be a band and ε a compatible partition on it. If S is an orthodox semigroup with band of idempotents E such that there exists a congruence on S inducing the partition ε then we define a homomorphism of S into a Hall semigroup whose kernel is the greatest congruence on S inducing the partition ε. On the other hand, we define a subsemigroup of the Hall semigroup WE possessing the property that S is an othodox semigroup with band of idempotents E which has a congruence inducing ε if and only if the range of the Hall homomoprhism of S into WE is contained in .
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.