We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The high redshift ‘little red dots’ (LRDs) detected with the James Webb Space Telescope are considered to be the cores of emerging galaxies that host active galactic nuclei (AGN). For the first time, we compare LRDs with local compact stellar systems and an array of galaxy-morphology-dependent stellar mass-black hole mass scaling relations in the $M_\mathrm{ bh}$–$M_{\star}$ diagrams. When considering the 2023–2024 masses for LRDs, they are not equivalent to nuclear star clusters (NSCs), with the latter having higher $M_\mathrm{ bh}/M_{\star}$ ratios. However, the least massive LRDs exhibit similar $M_\mathrm{ bh}$ and $M_\mathrm{ \star,gal}$ values as ultracompact dwarf (UCD) galaxies, believed to be the cores of stripped/threshed galaxies. We show that the LRDs span the $M_\mathrm{ bh}$–$M_\mathrm{ \star,gal}$ diagram from UCD galaxies to primaeval lenticular galaxies. In contrast, local spiral galaxies and the subset of major-merger-built early-type galaxies define $M_\mathrm{ bh}$–$M_{\star,gal}$ relations that are offset to higher stellar masses. Based on the emerging 2025 masses for LRDs, they may yet have similarities with NSCs, UCD galaxies, and green peas. Irrespective of this developing situation, we additionally observe that low-redshift galaxies with AGN align with the quasi-quadratic or steeper black hole scaling relations defined by local disc galaxies with directly measured black hole masses. This highlights the benefits of considering a galaxy’s morphology – which reflects its accretion and merger history – to understand the coevolution of galaxies and their black holes. Future studies of spatially resolved galaxies with secure masses at intermediate-to-high redshift hold the promise of detecting the emergence and evolution of the galaxy-morphology-dependent $M_\mathrm{ bh}$–$M_{\star}$ relations.
Leptospira are bacteria that cause leptospirosis in both humans and animals. Human Leptospira infections in Uganda are suspected to arise from animal–human interactions. From a nationwide survey to determine Leptospira prevalence and circulating sequence types in Uganda, we tested 2030 livestock kidney samples, and 117 small mammals (rodents and shrews) using real-time PCR targeting the lipL32 gene. Pathogenic Leptospira species were detected in 45 livestock samples but not in the small mammals. The prevalence was 6.12% in sheep, 4.25% in cattle, 2.08% in goats, and 0.46% in pigs. Sequence typing revealed that Leptospira borgpetersenii, Leptospira kirschneri, and Leptospira interrogans are widespread across Uganda, with 13 novel sequence types identified. These findings enhance the East African MLST database and support the hypothesis that domesticated animals may be a source of human leptospirosis in Uganda, highlighting the need for increased awareness among those in close contact with livestock.
El presente artículo aborda los alcances y limitaciones del reconocimiento obtenido por el Pueblo Tribal Afrodescendiente Chileno en el proceso constituyente iniciado en Chile luego de la revuelta social de 2019 y, particularmente, en las deliberaciones de la Convención Constitucional que sesionó entre 2021 y 2022. Además de analizar la presentación y votación de normas relacionadas con el Pueblo Tribal Afrodescendiente, el principal foco está puesto en los discursos de los/as convencionales constituyentes relacionados con dichas normas. Mediante un análisis crítico del discurso, se identifican tres ejes discursivos que enmarcaron el apoyo o rechazo de iniciativas en torno al reconocimiento afrodescendiente, vinculados al significado de la categoría jurídica de “pueblo tribal”, a la cuestión de la preexistencia y a la extranjerización. El artículo concluye con una discusión de las posturas adoptadas por diferentes sectores de la Convención, identificando algunos imaginarios que comportaron límites para la inclusión del pueblo afrochileno en la propuesta constitucional.
Recent ground-based deep observations of the Universe have discovered large populations of massive quiescent galaxies at $z\sim3\!-\!5$. With the launch of the James Webb Space Telescope (JWST), the on-board Near-Infrared Spectrograph (NIRSpec) instrument will provide continuous $0.6\!-\!5.3\,\unicode{x03BC}\,\mathrm{m}$ spectroscopic coverage of these galaxies. Here we show that NIRSpec/CLEAR spectroscopy is ideal to probe the completeness of photometrically selected massive quiescent galaxies such as the ones presented by Schreiber et al. (2018b, A&A, 618, A85). Using a subset of the Schreiber et al. (2018b, A&A, 618, A85) sample with deep Keck/MOSFIRE spectroscopy presented by Esdaile J., et al. (2021b, ApJ, 908, L35), we perform a suite of mock JWST/NIRSpec observations to determine optimal observing strategies to efficiently recover the star formation histories (SFHs), element abundances, and kinematics of these massive quiescent galaxies. We find that at $z\sim3$, medium resolution G235M/FL170LP NIRSpec observations could recover element abundances at an accuracy of ${\sim}15\%$, which is comparable to local globular clusters. Mimicking ZFOURGE COSMOS photometry, we perform mock spectrophotometric fitting with Prospector to show that the overall shape of the SFHs of our mock galaxies can be recovered well, albeit with a dependency on the number of non-parametric SFH bins. We show that deep high-resolution G235H/FL170LP integral field spectroscopy with a $S/N\sim7$ per spaxel is required to constrain the rotational properties of our sample at $>\!2\sigma$ confidence. Thus, through optimal grism/filter choices, JWST/NIRSpec slit and integral field spectroscopy observations would provide tight constraints to galaxy evolution in the early Universe.