We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the following problem: For which Tychonoff spaces $X$ do the free topological group $F(X)$ and the free abelian topological group $A(X)$ admit a quotient homomorphism onto a separable and nontrivial (i.e., not finitely generated) group? The existence of the required quotient homomorphisms is established for several important classes of spaces $X$, which include the class of pseudocompact spaces, the class of locally compact spaces, the class of $\unicode[STIX]{x1D70E}$-compact spaces, the class of connected locally connected spaces, and some others.
We also show that there exists an infinite separable precompact topological abelian group $G$ such that every quotient of $G$ is either the one-point group or contains a dense non-separable subgroup and, hence, does not have a countable network.
It is proved that the free topological vector space $\mathbb{V}([0,1])$ contains an isomorphic copy of the free topological vector space $\mathbb{V}([0,1]^{n})$ for every finite-dimensional cube $[0,1]^{n}$, thereby answering an open question in the literature. We show that this result cannot be extended from the closed unit interval $[0,1]$ to general metrisable spaces. Indeed, we prove that the free topological vector space $\mathbb{V}(X)$ does not even have a vector subspace isomorphic as a topological vector space to $\mathbb{V}(X\oplus X)$, where $X$ is a Cook continuum, which is a one-dimensional compact metric space. This is also shown to be the case for a rigid Bernstein set, which is a zero-dimensional subspace of the real line.
We consider the following question: for which metrizable separable spaces $X$ does the free abelian topological group $A(X\oplus X)$ isomorphically embed into $A(X)$. While for many natural spaces $X$ such an embedding exists, our main result shows that if $X$ is a Cook continuum or $X$ is a rigid Bernstein set, then $A(X\oplus X)$ does not embed into $A(X)$ as a topological subgroup. The analogous statement is true for the free boolean group $B(X)$.
We give a complete description of the topological spaces X such that the free abelian topological group A(X) embeds into the free abelian topological group A(I) on the closed unit interval. In particular, the free abelian topological group A(X) on any finite-dimensional compact metrizable space X embeds into A(I). To obtain our description, we study similar embeddings of the free locally convex spaces and continuous surjections between the spaces of continuous functions with the pointwise topology. Proofs are based on the classical Kolmogorov's Superposition Theorem.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.