We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G$ be a finite group acting linearly on the vector space $V$ over a field of arbitrary characteristic. The action is called coregular if the invariant ring is generated by algebraically independent homogeneous invariants, and the direct summand property holds if there is a surjective $k{{[V]}^{G}}$-linear map $\pi \,:\,k[V]\,\to \,k{{[V]}^{G}}$.
The following Chevalley–Shephard–Todd type theorem is proved. Suppose $G$ is abelian. Then the action is coregular if and only if $G$ is generated by pseudo-reflections and the direct summand property holds.
The notion of decompositon class in a semisimple Lie algebra is a common generalization of nilpotent orbits and the set of regular semisimple elements.We prove that the closure of a decomposition class has many properties in common with nilpotent varieties, e.g., its normalization has rational singularities.
The famous Grothendieck simultaneous resolution is related to the decomposition class of regular semisimple elements. We study the properties of the analogous commutative diagrams associated to an arbitrary decomposition class.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.