We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
A key step toward understanding psychiatric disorders that disproportionately impact female mental health is delineating the emergence of sex-specific patterns of brain organisation at the critical transition from childhood to adolescence. Prior work suggests that individual differences in the spatial organisation of functional brain networks across the cortex are associated with psychopathology and differ systematically by sex.
We aimed to evaluate the impact of sex on the spatial organisation of person-specific functional brain networks.
We leveraged person-specific atlases of functional brain networks, defined using non-negative matrix factorisation, in a sample of n = 6437 youths from the Adolescent Brain Cognitive Development Study. Across independent discovery and replication samples, we used generalised additive models to uncover associations between sex and the spatial layout (topography) of personalised functional networks (PFNs). We also trained support vector machines to classify participants’ sex from multivariate patterns of PFN topography.
Sex differences in PFN topography were greatest in association networks including the frontoparietal, ventral attention and default mode networks. Machine learning models trained on participants’ PFNs were able to classify participant sex with high accuracy.
Sex differences in PFN topography are robust, and replicate across large-scale samples of youth. These results suggest a potential contributor to the female-biased risk in depressive and anxiety disorders that emerge at the transition from childhood to adolescence.
Attention impairment is an under-investigated feature and diagnostic criterion of Major Depressive Disorder (MDD) that is associated with poorer outcomes. Despite increasing knowledge regarding mechanisms of attention in healthy adults, we lack a detailed characterization of attention impairments and their neural signatures in MDD.
Here, we focus on selective attention and advance a deep multi-modal characterization of these impairments in MDD, using data acquired from n = 1008 patients and n = 336 age- and sex-matched healthy controls. Selective attention impairments were operationalized and anchored in a behavioral performance measure, assessed within a battery of cognitive tests. We sought to establish the accompanying neural signature using independent measures of functional magnetic resonance imaging (15% of the sample) and electroencephalographic recordings of oscillatory neural activity.
Greater impairment on the behavioral measure of selective attention was associated with intrinsic hypo-connectivity of the fronto-parietal attention network. Not only was this relationship specific to the fronto-parietal network unlike other large-scale networks; this hypo-connectivity was also specific to selective attention performance unlike other measures of cognition. Selective attention impairment was also associated with lower posterior alpha (8–13 Hz) power at rest and was related to more severe negative bias (frequent misidentifications of neutral faces as sad and lingering attention on sad faces), relevant to clinical features of negative attributions and brooding. Selective attention impairments were independent of overall depression severity and of worrying or sleep problems.
These results provide a foundation for the clinical translational development of objective markers and targeted therapeutics for attention impairment in MDD.
Email your librarian or administrator to recommend adding this to your organisation's collection.