We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Prognosticating outcomes for traumatic brain injury (TBI) patients is challenging due to the required specialized skills and variability among clinicians. Recent attempts to standardize TBI prognosis have leveraged machine learning (ML) methodologies. This study evaluates the necessity and influence of ML-assisted TBI prognostication through healthcare professionals’ perspectives via focus group discussions.
Methods:
Two virtual focus groups included ten key TBI care stakeholders (one neurosurgeon, two emergency clinicians, one internist, two radiologists, one registered nurse, two researchers in ML and healthcare and one patient representative). They answered six open-ended questions about their perceptions and potential ML use in TBI prognostication. Transcribed focus group discussions were thematically analyzed using qualitative data analysis software.
Results:
The study captured diverse perceptions and interests in TBI prognostication across clinical specialties. Notably, certain clinicians who currently do not prognosticate expressed an interest in doing so independently provided they had access to ML support. Concerns included ML’s accuracy and the need for proficient ML researchers in clinical settings. The consensus suggested using ML as a secondary consultation tool and promoting collaboration with internal or external research resources. Participants believed ML prognostication could enhance disposition planning and standardize care regardless of clinician expertise or injury severity. There was no evidence of perceived bias or interference during the discussions.
Conclusion:
Our findings revealed an overall positive attitude toward ML-based prognostication. Despite raising multiple concerns, the focus group discussions were particularly valuable in underscoring the potential of ML in democratizing and standardizing TBI prognosis practices.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.