We consider the following two properties of a functor F from a presheaf topos to the category of sets: (a) F preserves connected limits, and (b) the Artin glueing of F is again a presheaf topos. We show that these two properties are in fact equivalent. In the process, we develop a general technique for associating categorical properties of a category obtained by Artin glueing with preservation properties of the functor along which the glueing takes place. We also give a syntactic characterization of those monads on Set whose functor parts have the above properties, and whose units and multiplications are cartesian natural transformations.