We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Although neuroimaging studies suggest brain regional abnormalities in depressive disorders, it remains unclear whether abnormalities are present at illness onset or reflect disease progression.
Objectives
We hypothesized that cerebral variations were present in adolescents with subthreshold depression known to be at high risk for later full-blown depression.
Aims
We examined brain structural and diffusion-weighted magnetic resonance images of adolescents with subthreshold depression.
Methods
The participants were extracted from the European IMAGEN study cohort of healthy adolescents recruited at age 14. Subthreshold depression was defined as a distinct period of abnormally depressed or irritable mood, or loss of interest, plus two or more depressive symptoms but without diagnosis of Major Depressive Episode. Comparisons were performed between adolescents meeting these criteria and control adolescents within the T1-weighted imaging modality (118 and 475 adolescents respectively) using voxel-based morphometry and the diffusion tensor imaging modality (89 ad 422 adolescents respectively) using tract-based spatial statistics. Whole brain analyses were performed with a statistical threshold set to p< 0.05 corrected for multiple comparisons.
Results
Compared with controls, adolescents with subthreshold depression had smaller gray matter volume in caudate nuclei, medial frontal and cingulate cortices; smaller white matter volume in anterior limb of internal capsules, left forceps minor and right cingulum; and lower fractional anisotropy and higher radial diffusivity in the genu of corpus callosum.
Conclusions
The findings suggest that adolescents with subthreshold depression have volumetric and microstructural gray and white matter changes in the emotion regulation frontal-striatal-limbic network.
Postoperative cognitive impairment is among the most common medical complications associated with surgical interventions – particularly in elderly patients. In our aging society, it is an urgent medical need to determine preoperative individual risk prediction to allow more accurate cost–benefit decisions prior to elective surgeries. So far, risk prediction is mainly based on clinical parameters. However, these parameters only give a rough estimate of the individual risk. At present, there are no molecular or neuroimaging biomarkers available to improve risk prediction and little is known about the etiology and pathophysiology of this clinical condition. In this short review, we summarize the current state of knowledge and briefly present the recently started BioCog project (Biomarker Development for Postoperative Cognitive Impairment in the Elderly), which is funded by the European Union. It is the goal of this research and development (R&D) project, which involves academic and industry partners throughout Europe, to deliver a multivariate algorithm based on clinical assessments as well as molecular and neuroimaging biomarkers to overcome the currently unsatisfying situation.
Resilience is the capacity of individuals to resist mental disorders despite exposure to stress. Little is known about its neural underpinnings. The putative variation of white-matter microstructure with resilience in adolescence, a critical period for brain maturation and onset of high-prevalence mental disorders, has not been assessed by diffusion tensor imaging (DTI). Lower fractional anisotropy (FA) though, has been reported in the corpus callosum (CC), the brain's largest white-matter structure, in psychiatric and stress-related conditions. We hypothesized that higher FA in the CC would characterize stress-resilient adolescents.
Method
Three groups of adolescents recruited from the community were compared: resilient with low risk of mental disorder despite high exposure to lifetime stress (n = 55), at-risk of mental disorder exposed to the same level of stress (n = 68), and controls (n = 123). Personality was assessed by the NEO-Five Factor Inventory (NEO-FFI). Voxelwise statistics of DTI values in CC were obtained using tract-based spatial statistics. Regional projections were identified by probabilistic tractography.
Results
Higher FA values were detected in the anterior CC of resilient compared to both non-resilient and control adolescents. FA values varied according to resilience capacity. Seed regional changes in anterior CC projected onto anterior cingulate and frontal cortex. Neuroticism and three other NEO-FFI factor scores differentiated non-resilient participants from the other two groups.
Conclusion
High FA was detected in resilient adolescents in an anterior CC region projecting to frontal areas subserving cognitive resources. Psychiatric risk was associated with personality characteristics. Resilience in adolescence may be related to white-matter microstructure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.