We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
The number of novel antimalarial candidates entering preclinical development has seen an increase over the last several years. Most of these drug candidates were originally identified as hits coming from screening large chemical libraries specifically targeting the asexual blood stages of Plasmodium falciparum. Indeed, a large proportion of the current antimalarial arsenal has mainly targeted the asexual blood stage which is responsible for clinical symptoms of the disease. However, as part of the eradication agenda and to address resistance, any next-generation antimalarial should have additional activity on at least one other parasite life stage, i.e. gametocytocidal and/or tissue schizonticidal activity. We have applied this approach by screening compounds with intrinsic activity on asexual blood stages in assays against sexual and liver stages and identified two new antimalarial chemotypes with activity on multiple parasite life stages. This strategy can be expanded to identify other chemical classes of molecules with similar activity profiles for the next generation antimalarials. The following review summarizes the discovery of the spiroindolones and imidazolopiperazine classes of antimalarials developed by the NGBS consortium (Novartis Institute for Tropical Diseases, Genomic Institute of the Novartis Research Foundation, Biomedical Primate Research Center, and the Swiss Tropical and Public Health Institute) currently in clinical trials.
Email your librarian or administrator to recommend adding this to your organisation's collection.