We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A large international conference celebrated the 50-year career of Anatole Katok and the body of research across smooth dynamics and ergodic theory that he touched. In this book many leading experts provide an account of the latest developments at the research frontier and together set an agenda for future work, including an explicit problem list. This includes elliptic, parabolic, and hyperbolic smooth dynamics, ergodic theory, smooth ergodic theory, and actions of higher-rank groups. The chapters are written in a readable style and give a broad view of each topic; they blend the most current results with the developments leading up to them, and give a perspective on future work. This book is ideal for graduate students, instructors and researchers across all research areas in dynamical systems and related subjects.
Stable accessibility of partially hyperbolic systems is central to their stable ergodicity, and we establish its
$C^1$
-density among partially hyperbolic flows, as well as in the categories of volume-preserving, symplectic, and contact partially hyperbolic flows. As applications, we obtain on one hand in each of these four categories of flows the
$C^1$
-density of the
$C^1$
-stable topological transitivity and triviality of the centralizer, and on the other hand the
$C^1$
-density of the
$C^1$
-stable K-property of the natural volume in the latter three categories.