We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Experimental solubility data for gibbsite and kaolinite are reviewed and applied to the problem of gibbsite stability within the natural environment. It is concluded that free alumina compounds formed (only) in lateritic soils will tend to silicify spontaneously in all sedimentary environments. This metasomatic reaction should be accompanied by massive volume expansion: unusual textures are to be anticipated.
Petrographic and field descriptions of a number of ancient kaolinitic sediments (some with, some without free alumina) are reviewed. It is concluded that silicification of hydrated aluminum oxides was an important mechanism of kaolinite formation in ancient sediments and that free alumina compounds persist only as a result of the unusual volume expansion associated with kaolinite formation.
A method is described for preparing electron-transparent sections of fine-grained argillaceous rocks suitable for making transmission micrographs. A sediment and a slate are used as examples. Sections perpendicular to bedding or cleavage yield diffraction patterns with clearly defined 00l reflections. These allow immediate identification of 7, 10 and 14 Å structures. The combination of detailed textural information with structural identification of individual phyllosilicate particles affords a powerful method for the investigation of late diagenetic and early metamorphic changes in sediments.
The <0.1-μm size fraction of an Ordovician K-bentonite from northern Kentucky was characterized by X-ray powder diffraction (XRD). Using A.I.P.E. A. criteria for interstratification nomenclature and Reynolds’ computer algorithm the dominant clay mineral proved to be an R2 ordered illite/smectite. The best fit of observed and calculated XRD tracings was obtained using 12 > N > 5, where N is the number of layers within a diffracting domain.
Sections of the K-bentonite were prepared by ion-beam milling and examined in an analytical transmission electron microscope (ATEM). One-dimensional lattice images observed parallel to the a-b plane showed subparallel packets, about 50–100 Å thick, each of which consisted of about 10-Â thick unit layers. Somewhat thicker unit layers (as much as 14.5 Å) were also seen. The former are presumed to be illite, whereas the latter may be partially collapsed smectite. Selected-area electron diffraction patterns suggested simultaneous diffraction from several packets, each containing at least five layers. Both h0l and 0kl spacings were usually present, indicating that the stacking of the subparallel packets was random. Quantitative analysis by AEM and electron microprobe show the clay to be low in tetrahedral Al but high in octahedral Mg, the latter presumably contributing largely to the interlayer charge responsible for K fixation. The TEM data are broadly reconcilable with the accepted XRD interpretation of a two-component, mixed-layer clay. Alternatively, the TEM images may be interpreted as a single phase having numerous packet boundaries, the latter being responsible for swelling behavior. These two interpretations will not be fully reconciled until greater analytical precision and resolution permit individual packets to be studied. This work suggests that mineral definitions based purely on XRD interpretations may have to be reconsidered as more electron microscope data become available.
Over the last 25 years, radiowave detection of neutrino-generated signals, using cold polar ice as the neutrino target, has emerged as perhaps the most promising technique for detection of extragalactic ultra-high energy neutrinos (corresponding to neutrino energies in excess of 0.01 Joules, or 1017 electron volts). During the summer of 2021 and in tandem with the initial deployment of the Radio Neutrino Observatory in Greenland (RNO-G), we conducted radioglaciological measurements at Summit Station, Greenland to refine our understanding of the ice target. We report the result of one such measurement, the radio-frequency electric field attenuation length $L_\alpha$. We find an approximately linear dependence of $L_\alpha$ on frequency with the best fit of the average field attenuation for the upper 1500 m of ice: $\langle L_\alpha \rangle = ( ( 1154 \pm 121) - ( 0.81 \pm 0.14) \, ( \nu /{\rm MHz}) ) \,{\rm m}$ for frequencies ν ∈ [145 − 350] MHz.
To investigate a cluster of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in employees working on 1 floor of a hospital administration building.
Methods:
Contact tracing was performed to identify potential exposures and all employees were tested for SARS-CoV-2. Whole-genome sequencing was performed to determine the relatedness of SARS-CoV-2 samples from infected personnel and from control cases in the healthcare system with coronavirus disease 2019 (COVID-19) during the same period. Carbon dioxide levels were measured during a workday to assess adequacy of ventilation; readings >800 parts per million (ppm) were considered an indication of suboptimal ventilation. To assess the potential for airborne transmission, DNA-barcoded aerosols were released, and real-time polymerase chain reaction was used to quantify particles recovered from air samples in multiple locations.
Results:
Between December 22, 2020, and January 8, 2021, 17 coworkers tested positive for SARS-CoV-2, including 13 symptomatic and 4 asymptomatic individuals. Of the 5 cluster SARS-CoV-2 samples sequenced, 3 were genetically related, but these employees denied higher-risk contacts with one another. None of the sequences from the cluster were genetically related to the 17 control sequences of SARS-CoV-2. Carbon dioxide levels increased during a workday but never exceeded 800 ppm. DNA-barcoded aerosol particles were dispersed from the sites of release to locations throughout the floor; 20% of air samples had >1 log10 particles.
Conclusions:
In a hospital administration building outbreak, sequencing of SARS-CoV-2 confirmed transmission among coworkers. Transmission occurred despite the absence of higher-risk exposures and in a setting with adequate ventilation based on monitoring of carbon dioxide levels.
This SHEA white paper identifies knowledge gaps and challenges in healthcare epidemiology research related to coronavirus disease 2019 (COVID-19) with a focus on core principles of healthcare epidemiology. These gaps, revealed during the worst phases of the COVID-19 pandemic, are described in 10 sections: epidemiology, outbreak investigation, surveillance, isolation precaution practices, personal protective equipment (PPE), environmental contamination and disinfection, drug and supply shortages, antimicrobial stewardship, healthcare personnel (HCP) occupational safety, and return to work policies. Each section highlights three critical healthcare epidemiology research questions with detailed description provided in supplementary materials. This research agenda calls for translational studies from laboratory-based basic science research to well-designed, large-scale studies and health outcomes research. Research gaps and challenges related to nursing homes and social disparities are included. Collaborations across various disciplines, expertise and across diverse geographic locations will be critical.
On coronavirus disease 2019 (COVID-19) wards, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid was frequently detected on high-touch surfaces, floors, and socks inside patient rooms. Contamination of floors and shoes was common outside patient rooms on the COVID-19 wards but decreased after improvements in floor cleaning and disinfection were implemented.
For patients with methicillin-resistant Staphylococcus aureus (MRSA) colonization, a traditional fist-bump greeting did not significantly reduce MRSA transfer in comparison to a handshake. However, transfer was reduced with a modified fist bump that minimized the surface area of contact and when hand hygiene was performed before the handshake.
We investigate the effect of constant-vorticity background shear on the properties of wavetrains in deep water. Using the methodology of Fokas (A Unified Approach to Boundary Value Problems, 2008, SIAM), we derive a higher-order nonlinear Schrödinger equation in the presence of shear and surface tension. We show that the presence of shear induces a strong coupling between the carrier wave and the mean-surface displacement. The effects of the background shear on the modulational instability of plane waves is also studied, where it is shown that shear can suppress instability, although not for all carrier wavelengths in the presence of surface tension. These results expand upon the findings of Thomas et al. (Phys. Fluids, vol. 24 (12), 2012, 127102). Using a modification of the generalized Lagrangian mean theory in Andrews & McIntyre (J. Fluid Mech., vol. 89, 1978, pp. 609–646) and approximate formulas for the velocity field in the fluid column, explicit, asymptotic approximations for the Lagrangian and Stokes drift velocities are obtained for plane-wave and Jacobi elliptic function solutions of the nonlinear Schrödinger equation. Numerical approximations to particle trajectories for these solutions are found and the Lagrangian and Stokes drift velocities corresponding to these numerical solutions corroborate the theoretical results. We show that background currents have significant effects on the mean transport properties of waves. In particular, certain combinations of background shear and carrier wave frequency lead to the disappearance of mean-surface mass transport. These results provide a possible explanation for the measurements reported in Smith (J. Phys. Oceanogr., vol. 36, 2006, pp. 1381–1402). Our results also provide further evidence of the viability of the modification of the Stokes drift velocity beyond the standard monochromatic approximation, such as recently proposed in Breivik et al. (J. Phys. Oceanogr., vol. 44, 2014, pp. 2433–2445) in order to obtain a closer match to a range of complex ocean wave spectra.
The oxidation state and mineralogical distribution of Fe in two different shale sequences have been studied by Mössbauer spectroscopy and chemical methods. Kimmeridge Clay Formation sediments proved to be richer in total Fe than Gulf Coast shales. In such sediments, Fe may be present in clay minerals (Fe(II) in chlorite, Fe(III) in illite and illite/smectite), pyrite, and ferroan carbonates (siderite, dolomite and ankerite). Pyrite accounts for a much greater proportion of the total Fe in the Kimmeridge Clay samples in which it is difficult to reconcile chemical data with Mössbauer data. There is major doublet overlap of Fe(III) in silicates with Fe(II) in pyrite and spectra cannot be satisfactorily deconvoluted. This would appear to be a fundamental limitation for simple applications. In the pyrite-poor Gulf Coast material, however, chemical and spectroscopic evaluations of overall valence state are much more consistent. Confidence in both determinative techniques is generated, and useful information documenting progressive reduction and redistribution of Fe with burial is obtained.
Analytical transmission electron microscopy was applied to some authigenic chlorites occurring as grain coatings in sandstones. Compositional variation proved to be relatively slight: all were magnesian chamosites. The coating chlorites were often intimately mixed with extremely fine-grained (0·01–0·2 µm) hematite but analytical ‘contamination’ was avoided because of the very high resolution of both observation (spot location) and analysis. One example of a water-sensitive (‘swelling chlorite’) coating was also studied. This proved to have a very much more variable composition even within a single section. The coating appeared to include both chloritic and vermiculitic components. The effect of this on structural formulae is discussed and a model proposed in which the ‘talc’ layer may be common to both components.
Authigenic illite samples have been isolated from preserved reservoir core and characterized by XRD, XRF, SEM and ATEM. Reactivity towards aqueous solutions containing acids, alkalis, complexing agents and reducing agents has been evaluated using both static (flasks) and dynamic (flow-cell) experiments at 80°C and atmospheric pressure. In flask experiments with dilute reagents, reaction appears to be simple stoichiometric dissolution. The same pattern extends to higher concentrations (molar), except for alkalis where Si is preferentially leached leaving an Al-rich residual phase. Under the more vigorous conditions of flow (continuous leaching by fresh reactant solutions), stronger acid and alkaline solutions both cause substantial dissolution although by different mechanisms. Acids displace K+ and cause illite to swell. In many of these experiments, gels were seen to precipitate downstream from the reaction site. These reactions are rapid, taking place in hours at 80°C. Similar reactions can be expected to take place in consequence of a range of drilling, stimulation and production procedures. Clay dissolution, modification and, possibly, migration would be anticipated close to the well-bore and damage from scaling (gels) somewhat further away.
A naturally occurring macroscopic sodium vermiculite from Unst, Shetland is described. It is similar in many respects to synthetic materials recently prepared from phlogopite by potassium replacement. In other respects, however, it is more akin to macroscopic Mg-vermiculites.
Analytical transmission electron microscopy (ATEM) was used to obtain chemical analyses of single illite crystals from Upper Carboniferous reservoir sandstones of the Bothamsall Oilfield, East Midlands, UK, and from Rotliegendes (Permian) sandstones of the North Sea. All samples were found to be highly aluminous, with only minor Mg and Fe, and to have near-ideal dioctahedral sheet totals. No significant variation in chemical composition of illite was found within the Bothamsall reservoir rocks, irrespective of paragenesis or stratigraphic horizon. Similar results were obtained from the Rotliegendes samples. Variation was found, however, between Bothamsall and Rotliegendes analyses populations. The Rotliegendes illites were distinctly more K-rich, which is the result of greater charge deficiency in the octahedral sheet. These results indicate that all the illite in both reservoirs precipitated in equilibrium with the reservoir pore-fluid. Furthermore, they imply that the physico-chemical composition of the pore-fluid did not evolve significantly between the different illite generations in the Bothamsall samples. These data, when compared with published analyses of authigenic illite, indicate that the compositional field for illite in sandstones is restricted in comparison with that of illite in mudrocks.
A range of authigenic sedimentary chlorites from sandstones has been studied by analytical transmission electron microscopy. Selected area (single crystal) electron diffraction patterns are of the Ib (β = 90°) polytype confirming the earlier observations of Hayes (1970).
TEM analyses show all samples to be relatively rich in both Al and Fe. In the general formula (Mg,Fe,Al)n [Si8−xAlxO20](OH)16, x varies between 1.5 and 2.6; Fe/(Fe + Mg) between 0.47 and 0.83 and n between 10.80 and 11.54. Octahedral Al is close to 3 in this formulation and Fe2+ predominates over Fe3+. Swelling chlorites have significantly different compositions which are consistent with smectite/chlorite interstratifications.
The Ib (β = 90°) polytype appears to be stable under conditions of moderate to deep burial. It replaces berthierine and swelling chlorites formed at lower temperatures. As commonly seen in grain coatings, however, it precipitates from porewater; solutes probably being contributed from several mineral decomposition reactions.
Concretionary siderite horizons are quite common in massive clay sequences. One such horizon, from the Westphalian of Yorkshire, has been studied in detail. Two iron-rich carbonate minerals occur together although they cannot be distinguished in thin section on account of very fine grain size. One is much richer in magnesium (pistomesite) than the other (siderite). The latter is rela-tively rich in manganese and the heavier stable carbon isotope 13C whereas the former carbonate is richer in calcium and 12C. The most important iron source is thought to have been hydrated iron oxides originating in soils. Much of the carbonate carbon started as organic molecules. The siderite appears to have formed earlier than the pistomesite. The stratiform character of these deposits appears to reflect siltier horizons in the mudstones, which presumably channelled pore water migration during compaction. This is probably why such carbonate horizons were formerly believed to be of simple sedimentary rather than diagenetic origin.