We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Targeted drug development efforts in patients with CHD are needed to standardise care, improve outcomes, and limit adverse events in the post-operative period. To identify major gaps in knowledge that can be addressed by drug development efforts and provide a rationale for current clinical practice, this review evaluates the evidence behind the most common medication classes used in the post-operative care of children with CHD undergoing cardiac surgery with cardiopulmonary bypass.
Methods:
We systematically searched PubMed and EMBASE from 2000 to 2019 using a controlled vocabulary and keywords related to diuretics, vasoactives, sedatives, analgesics, pulmonary vasodilators, coagulation system medications, antiarrhythmics, steroids, and other endocrine drugs. We included studies of drugs given post-operatively to children with CHD undergoing repair or palliation with cardiopulmonary bypass.
Results:
We identified a total of 127 studies with 51,573 total children across medication classes. Most studies were retrospective cohorts at single centres. There is significant age- and disease-related variability in drug disposition, efficacy, and safety.
Conclusion:
In this study, we discovered major gaps in knowledge for each medication class and identified areas for future research. Advances in data collection through electronic health records, novel trial methods, and collaboration can aid drug development efforts in standardising care, improving outcomes, and limiting adverse events in the post-operative period.
Infants with moderate-to-severe CHD frequently undergo cardiopulmonary bypass surgery in childhood. Morbidity and mortality are highest in those who develop post-operative low cardiac output syndrome. Vasoactive and inotropic medications are mainstays of treatment for these children, despite limited evidence supporting their use.
Methods:
To help inform clinical practice, as well as the conduct of future trials, we performed a systematic review of existing literature on inotropes and vasoactives in children after cardiac surgery using the PubMed and EMBASE databases. We included studies from 2000 to 2020, and the patient population was defined as birth – 18 years of age. Two reviewers independently reviewed studies to determine final eligibility.
Results:
The final analysis included 37 papers. Collectively, selected studies reported on 12 different vasoactive and inotropic medications in 2856 children. Overall evidence supporting the use of these drugs in children after cardiopulmonary bypass was limited. The majority of studies were small with 30/37 (81%) enrolling less than 100 patients, 29/37 (78%) were not randomised, and safety and efficacy endpoints differed widely, limiting the ability to combine data for meta-analyses.
Conclusion:
Vasoactive and inotropic support remain critical parts of post-operative care for children after cardiopulmonary bypass surgery. There is a paucity of data for the selection and dosing of vasoactives and inotropes for these patients. Despite the knowledge gaps that remain, numerous recent innovations create opportunities to rethink the conduct of clinical trials in this high-risk population.
Hunger relief agencies have a limited capacity to monitor the nutritional quality of their food. Validated measures of food environments, such as the Healthy Eating Index-2010 (HEI-2010), are challenging to use due to their time intensity and requirement for precise nutrient information. A previous study used out-of-sample predictions to demonstrate that an alternative measure correlated well with the HEI-2010. The present study revised the Food Assortment Scoring Tool (FAST) to facilitate implementation and tested the tool’s performance in a real-world food pantry setting.
Design
We developed a FAST measure with thirteen scored categories and thirty-one sub-categories. FAST scores were generated by sorting and weighing foods in categories, multiplying each category’s weight share by a healthfulness parameter and summing the categories (range 0–100). FAST was implemented by recording all food products moved over five days. Researchers collected FAST and HEI-2010 scores for food availability and foods selected by clients, to calculate correlations.
Setting
Five food pantries in greater Minneapolis/St. Paul, Minnesota, USA.
Subjects
Food carts of sixty food pantry clients.
Results
The thirteen-category FAST correlated well with the HEI-2010 in prediction models (r = 0·68). FAST scores averaged 61·5 for food products moved, 63·8 for availability and 62·5 for client carts. As implemented in the real world, FAST demonstrated good correlation with the HEI-2010 (r = 0·66).
Conclusions
The FAST is a flexible, valid tool to monitor the nutritional quality of food in pantries. Future studies are needed to test its use in monitoring improvements in food pantry nutritional quality over time.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.