We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study documents several correlations observed during the first run of the plasma wakefield acceleration experiment E300 conducted at FACET-II, using a single drive electron bunch. The established correlations include those between the measured maximum energy loss of the drive electron beam and the integrated betatron X-ray signal, the calculated total beam energy deposited in the plasma and the integrated X-ray signal, among three visible light emission measuring cameras and between the visible plasma light and X-ray signal. The integrated X-ray signal correlates almost linearly with both the maximum energy loss of the drive beam and the energy deposited into the plasma, demonstrating its usability as a measure of energy transfer from the drive beam to the plasma. Visible plasma light is found to be a useful indicator of the presence of a wake at three locations that overall are two metres apart. Despite the complex dynamics and vastly different time scales, the X-ray radiation from the drive bunch and visible light emission from the plasma may prove to be effective non-invasive diagnostics for monitoring the energy transfer from the beam to the plasma in future high-repetition-rate experiments.
This established textbook provides an accessible but comprehensive introduction to the quantum nature of light and its interaction with matter. The field of quantum optics is covered with clarity and depth, from the underlying theoretical framework of field quantization, atom–field interactions, and quantum coherence theory, to important and modern applications at the forefront of current research such as quantum interferometry, squeezed light, quantum entanglement, cavity quantum electrodynamics, laser-cooled trapped ions, and quantum information processing. The text is suitable for advanced undergraduate and graduate students and would be an ideal main text for a course on quantum optics. This long-awaited second edition builds upon the success of the first edition, including many new developments in the field, particularly in the area of quantum state engineering. Additional homework problems have been added, and content from the first edition has been updated and clarified throughout.
This chapter starts with the quantization of a single mode of the electromagnetic field and introduces the photon annihilation and creation operators. The photon number states are introduced. The field quadrature operators are introduced and quantum fluctuations are discussed. Multimode fields are then discussed. Thermal fields are introduced and vacuum fluctuations and the zero-point energy are discussed. The quantum phase of a quantized single-mode field is introduced.
In this chapter we discuss the interaction of radiation with matter, the latter taken to be a two-level atom. We consider interactions with both classical and quantum fields. We first introduce the dipole approximation and the rotating-wave approximation, and then study the Rabi model of a classical field interacting with a two-level atom. We next introduce the quantized field interaction with matter and discuss absorption, spontaneous emission, and stimulated emssion. We then discuss the long-time evolution of a single-mode field with a two-level atom –– the Jaynes––Cummings model.
In this chapter we first discuss the classical coherence functions and then introduce the quantum coherence functions. We present a quantum mechanical discussion of Young’s interference experiment. The Hanbury-Bown and Twiss experiment is discussed, along with higher-order coherence functions.
In this chapter we discuss nonclassical states of light. These include squeezed states of light, states with sub-Poissonian statistics, two-mode squeezed states, photon antibunching, superpositions of coherent states of light –– these being the Schrödinger-cat states. Also discussed in this chapter are the nonclassical states generated by the addition and subtraction of photons.
In this chapter we discuss optical tests of quantum mechanics. These include the Hong––Ou––Mandel effect, quantum erasure, induced coherence, superluminal tunneling of photons, violations of Bell’s inequality, and Franson’s experiment.
In this chapter we discuss the effects of losses on quantum optical systems. We discuss quantum jumps and master equations. We introduce the notion of using fictitious beam splitters to model losses. We introduce the decoherence of pure quantum mechanical states into a statistical mixture.
In this chapter we introduce the Glauber coherent states of a quantized field as eigenstates of the annihilation operator and as displaced vacuum states. The phase-space picture of coherent states is introduced, along with phase-space probability distributions, namely the Q distribution, the P distribution, and the Wigner function, and their interrelations are discussed.
In this chapter we discuss the application of entanglement to quantum optical interferometry and to quantum information processing. Quantum random number generation is discussed. Quantum cryptography is discussed, as is quantum computing. The quantum optical realization of some quantum gates is discussed.