We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that the set of elementary tensors is weakly closed in the projective tensor product of two Banach spaces. As a result, we answer a question of Rodríguez and Rueda Zoca [‘Weak precompactness in projective tensor products’, Indag. Math. (N.S.)35(1) (2024), 60–75], proving that if $(x_n) \subset X$ and $(y_n) \subset Y$ are two weakly null sequences such that $(x_n \otimes y_n)$ converges weakly in $X \widehat {\otimes }_\pi Y$, then $(x_n \otimes y_n)$ is also weakly null.
Any Lipschitz map $f : M \to N$ between two pointed metric spaces may be extended in a unique way to a bounded linear operator $\widehat {f} : \mathcal {F}(M) \to \mathcal {F}(N)$ between their corresponding Lipschitz-free spaces. In this paper, we give a necessary and sufficient condition for $\widehat {f}$ to be compact in terms of metric conditions on $f$. This extends a result by A. Jiménez-Vargas and M. Villegas-Vallecillos in the case of non-separable and unbounded metric spaces. After studying the behaviour of weakly convergent sequences made of finitely supported elements in Lipschitz-free spaces, we also deduce that $\widehat {f}$ is compact if and only if it is weakly compact.
We prove a general principle satisfied by weakly precompact sets of Lipschitz-free spaces. By this principle, certain infinite dimensional phenomena in Lipschitz-free spaces over general metric spaces may be reduced to the same phenomena in free spaces over their compact subsets. As easy consequences we derive several new and some known results. The main new results are: $\mathcal {F}(X)$ is weakly sequentially complete for every superreflexive Banach space $X$, and $\mathcal {F}(M)$ has the Schur property and the approximation property for every scattered complete metric space $M$.
In this note we prove that the Kalton interlaced graphs do not equi-coarsely embed into the James space ${\mathcal{J}}$ nor into its dual ${\mathcal{J}}^{\ast }$. It is a particular case of a more general result on the non-equi-coarse embeddability of the Kalton graphs into quasi-reflexive spaces with a special asymptotic structure. This allows us to exhibit a coarse invariant for Banach spaces, namely the non-equi-coarse embeddability of this family of graphs, which is very close to but different from the celebrated property ${\mathcal{Q}}$ of Kalton. We conclude with a remark on the coarse geometry of the James tree space ${\mathcal{J}}{\mathcal{T}}$ and of its predual.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.