We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
We give an efficient method based on minimal deterministic finite automata for computing the exact distribution of the number of occurrences and coverage of clumps (maximal sets of overlapping words) of a collection of words. In addition, we compute probabilities for the number of h-clumps, word groupings where gaps of a maximal length h between occurrences of words are allowed. The method facilitates the computation of p-values for testing procedures. A word is allowed to contain other words of the collection, making the computation more general, but also more difficult. The underlying sequence is assumed to be Markovian of an arbitrary order.
Competing patterns are compound patterns that compete to be the first to occur pattern-specific numbers of times. They represent a generalisation of the sooner waiting time problem and of start-up demonstration tests with both acceptance and rejection criteria. Through the use of finite Markov chain imbedding, the waiting time distribution of competing patterns in multistate trials that are Markovian of a general order is derived. Also obtained are probabilities that each particular competing pattern will be the first to occur its respective prescribed number of times, both in finite time and in the limit.
Email your librarian or administrator to recommend adding this to your organisation's collection.