We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We propose a novel nonlinear manifold learning from snapshot data and demonstrate its superiority over proper orthogonal decomposition (POD) for shedding-dominated shear flows. Key enablers are isometric feature mapping, Isomap, as encoder and, $K$-nearest neighbours ($K$NN) algorithm as decoder. The proposed technique is applied to numerical and experimental datasets including the fluidic pinball, a swirling jet and the wake behind a couple of tandem cylinders. Analysing the fluidic pinball, the manifold is able to describe the pitchfork bifurcation and the chaotic regime with only three feature coordinates. These coordinates are linked to the vortex-shedding phases and the force coefficients. The manifold coordinates of the swirling jet are comparable to the POD mode amplitudes, yet allow for a more distinct and less noise-sensitive manifold identification. A similar observation is made for the wake of two tandem cylinders. The tandem cylinders are aligned and located at a streamwise distance which corresponds to the transition between the single bluff body and the reattachment regimes of vortex shedding. Isomap unveils these two shedding regimes while the Lissajous plot of the first two POD mode amplitudes features a single circle. The reconstruction error of the manifold model is small compared with the fluctuation level, indicating that the low embedding dimensions contain the coherent structure dynamics. The proposed Isomap–$K$NN manifold learner is expected to be of great importance in estimation, dynamic modelling and control for a large range of configurations with dominant coherent structures.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.