We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
During the COVID-19 pandemic, the United States Centers for Disease Control and Prevention provided strategies, such as extended use and reuse, to preserve N95 filtering facepiece respirators (FFR). We aimed to assess the prevalence of N95 FFR contamination with SARS-CoV-2 among healthcare personnel (HCP) in the Emergency Department (ED).
Design:
Real-world, prospective, multicenter cohort study. N95 FFR contamination (primary outcome) was measured by real-time quantitative polymerase chain reaction. Multiple logistic regression was used to assess factors associated with contamination.
Setting:
Six academic medical centers.
Participants:
ED HCP who practiced N95 FFR reuse and extended use during the COVID-19 pandemic between April 2021 and July 2022.
Primary exposure:
Total number of COVID-19-positive patients treated.
Results:
Two-hundred forty-five N95 FFRs were tested. Forty-four N95 FFRs (18.0%, 95% CI 13.4, 23.3) were contaminated with SARS-CoV-2 RNA. The number of patients seen with COVID-19 was associated with N95 FFR contamination (adjusted odds ratio, 2.3 [95% CI 1.5, 3.6]). Wearing either surgical masks or face shields over FFRs was not associated with FFR contamination, and FFR contamination prevalence was high when using these adjuncts [face shields: 25% (16/64), surgical masks: 22% (23/107)].
Conclusions:
Exposure to patients with known COVID-19 was independently associated with N95 FFR contamination. Face shields and overlying surgical masks were not associated with N95 FFR contamination. N95 FFR reuse and extended use should be avoided due to the increased risk of contact exposure from contaminated FFRs.
We present new stable oxygen and carbon isotope composite records (δ18O, δ13C) of speleothems from Sandkraal Cave 1 (SK1) on the South African south coast for the time interval between 104 and 18 ka (with a hiatus between 48 and 41 ka). Statistical comparisons using kernel-based correlation analyses and semblance analyses based on continuous wavelet transforms inform the relationships of the new speleothem records to other proxies and their changes through time. Between 105 and ~70 ka, changes of speleothem δ18O values at SK1 are likely related to rainfall seasonality. Variations of δ13C values are associated with changes of vegetation density, prior carbonate precipitation (PCP), CO2 degassing in the cave, and possibly variations of the abundance of C3 and C4 grasses in the vegetation. The relationships of δ18O with other proxies shift between ~70 and 48 ka (Marine Isotope Stages 4–3) so that both stable isotope records now reflect CO2 degassing, evaporation, and PCP. Similar relationships also continue after the hiatus for the deposition phase between 42 and 18 ka. Our findings support modeling results suggesting drier conditions in the study area when the Southern Hemisphere westerlies are shifted north and the paleo–Agulhas Plain is exposed.