We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Second-mode wave growth within the hypersonic boundary layer of a slender cone is investigated experimentally using high-speed schlieren visualizations. Experiments were performed in AEDC Tunnel 9 over a range of unit Reynolds number conditions at a Mach number of approximately 14. A thin lens with a known density profile placed within the field of view enables calibration of the schlieren set-up, and the relatively high camera frame rates employed allow for the reconstruction of time-resolved pixel intensities at discrete streamwise locations. The calibration in conjunction with the reconstructed signals enables integrated spatial amplification rates ($N$ factors) to be calculated for each unit Reynolds number condition and compared to $N$ factors computed from both pressure transducer measurements and linear parabolized stability equation (PSE) solutions. Good agreement is observed between $N$ factors computed from the schlieren measurements and those computed from the PSE solutions for the most-amplified second-mode frequencies. The streamwise development of $N$ factors calculated from the schlieren measurements compares favourably to that calculated from the pressure measurements with slight variations in the $N$ factor magnitudes calculated for harmonic frequencies. Finally, a bispectral analysis is carried out to identify nonlinear phase-coupled quadratic interactions present within the boundary layer. Multiple interactions are identified and revealed to be associated with the growth of disturbances at higher harmonic frequencies.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.