We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
This paper addresses a joint pricing and inventory control problem for a batch production system with random leadtimes. Assume that demand arrives according to a Poisson process with a price-dependent arrival rate. Each replenishment order contains a single batch of a fixed lot size. The replenishment leadtime follows an Erlang distribution, with the number of completed phases recording the delivery state of outstanding orders. The objective is to determine an optimal inventory-pricing policy that maximizes total expected discounted profit or long-run average profit. We first show that when there is at most one order outstanding at any point in time and that excess demand is lost, the optimal reorder policy can be characterized by a critical stock level and the optimal pricing decision is decreasing in the inventory level and delivery state. We then extend the analysis to mixed-Erlang leadtime distribution which can be used to approximate any random leadtime to any degree of accuracy. We further extend the analysis to allowing three outstanding orders where the optimal reorder point becomes state-dependent: the closer an outstanding order is to its arrival or the more orders are outstanding, the lower selling price is charged and the lower reorder point is chosen. Finally, we address the backlog case and show that the monotone pricing structure may not be true when the optimal reorder point is negative.
This article considers the optimization and optimality of single-item/location, infinite-horizon, (s,S) inventory models. Departing from the conventional approach, we do not assume the loss function describing holding and shortage costs per period to be quasiconvex. As the existing optimization algorithms have been established on the condition of quasiconvexity, our goal in this article is to develop a computational procedure for obtaining optimal (s,S) policies for models with general loss functions. Our algorithm is based on the parametric method commonly used in fractional programming and is intuitive, exact, and efficient. Moreover, this method allows us to extend the optimality of (s,S) policies to a broader class of loss functions that can be non-quasiconvex.
Email your librarian or administrator to recommend adding this to your organisation's collection.