We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider integral models of Hilbert modular varieties with Iwahori level structure at primes over p, first proving a Kodaira–Spencer isomorphism that gives a concise description of their dualizing sheaves. We then analyze fibres of the degeneracy maps to Hilbert modular varieties of level prime to p and deduce the vanishing of higher direct images of structure and dualizing sheaves, generalizing prior work with Kassaei and Sasaki (for p unramified in the totally real field F). We apply the vanishing results to prove flatness of the finite morphisms in the resulting Stein factorizations, and combine them with the Kodaira–Spencer isomorphism to simplify and generalize the construction of Hecke operators at primes over p on Hilbert modular forms (integrally and mod p).
We carry out a thorough study of weight-shifting operators on Hilbert modular forms in characteristic p, generalising the author’s prior work with Sasaki to the case where p is ramified in the totally real field. In particular, we use the partial Hasse invariants and Kodaira–Spencer filtrations defined by Reduzzi and Xiao to improve on Andreatta and Goren’s construction of partial $\Theta $-operators, obtaining ones whose effect on weights is optimal from the point of view of geometric Serre weight conjectures. Furthermore, we describe the kernels of partial $\Theta $-operators in terms of images of geometrically constructed partial Frobenius operators. Finally, we apply our results to prove a partial positivity result for minimal weights of mod p Hilbert modular forms.
We consider mod $p$ Hilbert modular forms associated to a totally real field of degree $d$ in which $p$ is unramified. We prove that every such form arises by multiplication by partial Hasse invariants from one whose weight (a $d$-tuple of integers) lies in a certain cone contained in the set of non-negative weights, answering a question of Andreatta and Goren. The proof is based on properties of the Goren–Oort stratification on mod $p$ Hilbert modular varieties established by Goren and Oort, and Tian and Xiao.
A generalization of Serre’s Conjecture asserts that if $F$ is a totally real field, then certain characteristic $p$ representations of Galois groups over $F$ arise from Hilbert modular forms. Moreover, it predicts the set of weights of such forms in terms of the local behaviour of the Galois representation at primes over $p$. This characterization of the weights, which is formulated using $p$-adic Hodge theory, is known under mild technical hypotheses if $p>2$. In this paper we give, under the assumption that $p$ is unramified in $F$, a conjectural alternative description for the set of weights. Our approach is to use the Artin–Hasse exponential and local class field theory to construct bases for local Galois cohomology spaces in terms of which we identify subspaces that should correspond to ones defined using $p$-adic Hodge theory. The resulting conjecture amounts to an explicit description of wild ramification in reductions of certain crystalline Galois representations. It enables the direct computation of the set of Serre weights of a Galois representation, which we illustrate with numerical examples. A proof of this conjecture has been announced by Calegari, Emerton, Gee and Mavrides.
The London Mathematical Society Symposium – EPSRC Symposium on Galois Representations and Automorphic Forms was held at the University of Durham from 18th July until 28th July 2011. These topics have been playing an important role in present-day number theory, especially via the Langlands program and the connections it entails. The meeting brought together researchers from around the world on these and related topics, with lectures on a variety of recent major developments in the area. Roughly half of these talks were individual lectures, while the rest constituted series on the following themes:
• p-adic local Langlands
• Curves and vector bundles in p-adic Hodge theory
• The fundamental lemma and trace formula
• Anabelian geometry
• Potential automorphy
These Proceedings present much of the progress described in those lectures. The organizers are very grateful to all the speakers and to others who contributed articles. We also wish to thank the London Mathematical Society and EPSRC for the financial support that made the meeting possible. We warmly appreciate the assistance and hospitality provided by the University of Durham's Department of Mathematics and Grey College. These institutions have helped to make the Symposia such a well established and highly valued event in the number theory community.
The London Mathematical Society Symposium – EPSRC Symposium on Galois Representations and Automorphic Forms was held at the University of Durham from 18th July until 28th July 2011. These topics have been playing an important role in present-day number theory, especially via the Langlands program and the connections it entails. The meeting brought together researchers from around the world on these and related topics, with lectures on a variety of recent major developments in the area. Roughly half of these talks were individual lectures, while the rest constituted series on the following themes:
• p-adic local Langlands
• Curves and vector bundles in p-adic Hodge theory
• The fundamental lemma and trace formula
• Anabelian geometry
• Potential automorphy
These Proceedings present much of the progress described in those lectures. The organizers are very grateful to all the speakers and to others who contributed articles. We also wish to thank the London Mathematical Society and EPSRC for the financial support that made the meeting possible. We warmly appreciate the assistance and hospitality provided by the University of Durham's Department of Mathematics and Grey College. These institutions have helped to make the Symposia such a well established and highly valued event in the number theory community.
Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming to prominence via the celebrated Langlands program and Wiles' proof of Fermat's Last Theorem. This two-volume collection arose from the 94th LMS-EPSRC Durham Symposium on 'Automorphic Forms and Galois Representations' in July 2011, the aim of which was to explore recent developments in this area. The expository articles and research papers across the two volumes reflect recent interest in p-adic methods in number theory and representation theory, as well as recent progress on topics from anabelian geometry to p-adic Hodge theory and the Langlands program. The topics covered in volume two include curves and vector bundles in p-adic Hodge theory, associators, Shimura varieties, the birational section conjecture, and other topics of contemporary interest.
Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming to prominence via the celebrated Langlands program and Wiles' proof of Fermat's Last Theorem. This two-volume collection arose from the 94th LMS-EPSRC Durham Symposium on 'Automorphic Forms and Galois Representations' in July 2011, the aim of which was to explore recent developments in this area. The expository articles and research papers across the two volumes reflect recent interest in p-adic methods in number theory and representation theory, as well as recent progress on topics from anabelian geometry to p-adic Hodge theory and the Langlands program. The topics covered in volume one include the Shafarevich Conjecture, effective local Langlands correspondence, p-adic L-functions, the fundamental lemma, and other topics of contemporary interest.
Let $F$ be a totally real field, and $v$ a place of $F$ dividing an odd prime $p$. We study the weight part of Serre’s conjecture for continuous totally odd representations $\overline{{\it\rho}}:G_{F}\rightarrow \text{GL}_{2}(\overline{\mathbb{F}}_{p})$ that are reducible locally at $v$. Let $W$ be the set of predicted Serre weights for the semisimplification of $\overline{{\it\rho}}|_{G_{F_{v}}}$. We prove that, when $\overline{{\it\rho}}|_{G_{F_{v}}}$ is generic, the Serre weights in $W$ for which $\overline{{\it\rho}}$ is modular are exactly the ones that are predicted (assuming that $\overline{{\it\rho}}$ is modular). We also determine precisely which subsets of $W$ arise as predicted weights when $\overline{{\it\rho}}|_{G_{F_{v}}}$ varies with fixed generic semisimplification.
Let K be a finite unramified extension of Qp. We parametrize the (φ,Γ)-modules corresponding to reducible two-dimensional -representations of GK and characterize those which have reducible crystalline lifts with certain Hodge–Tate weights.
By
Fred Diamond, Department of Mathematics, Brandeis University, Waltham, MA 02454, USA. Current address: Department of Mathematics, King's College London, WC2R 2LS, UK. fred.diamond@kcl.ac.uka
Edited by
David Burns, King's College London,Kevin Buzzard, Imperial College of Science, Technology and Medicine, London,Jan Nekovář, Université de Paris VI (Pierre et Marie Curie)