We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A Poisson limit theorem for sums of dissociated 0–1 random variables is refined by deriving the first terms in an asymptotic expansion. The most natural refinement does not remove all the first-order error in a number of applications to tests of clustering, and a further approximation is derived which gives excellent results in practice. The proofs are based on the technique of Stein and Chen.
Let (S, ρ) be a separable metric space and G a group of transformations of S. Necessary and sufficient conditions for a distribution on S to be invariant under G are derived in terms of the behaviour of the convolution of a random transformation from G and a random element of S.
Sufficient conditions for a sum of dissociated random variables to be approximately normally distributed are derived. These results generalize the central limit theorem for U-statistics and provide conditions which can be verified in a number of applications. The method of proof is that due to Stein (1970).
Stein's (1970) method of proving limit theorems for sums of dependent random variables is used to derive Poisson approximations for a class of statistics, constructed from finitely exchangeable random variables.
Let be exchangeable random elements of a space and, for I a k-subset of , let XI be a 0–1 function. The statistics studied here are of the formwhere N is some collection of k -subsets of .
An estimate of the total variation distance between the distributions of W and an appropriate Poisson random variable is derived and is used to give conditions sufficient for W to be asymptotically Poisson. Two applications of these results are presented.
Silverman and Brown (1978) have derived Poisson limit theorems for certain sequences of symmetric statistics, based on a sample of independent identically distributed random variables. In this paper an incomplete version of these statistics is considered and a Poisson limit result shown to hold. The powers of some tests based on the incomplete statistic are investigated and the main results of the paper are used to simplify the derivations of the asymptotic distributions of some statistics previously published in the literature.
Let Y1, Y2, · ·· be a sequence of independent, identically distributed random variables, g some symmetric 0–1 function of m variables and setSilverman and Brown (1978) have shown that under certain conditions the statisticis asymptotically distributed as a Poisson random variable. They then use this result to derive limit distributions for various statistics, useful in the analysis of spatial data. In this paper, it is shown that Silverman and Brown's theorem holds under much weaker assumptions; assumptions which involve only the symmetry of the joint distributions of the Xil…im.
An array of random variables, indexed by a multidimensional parameter set, is said to be dissociated if the random variables are independent whenever their indexing sets are disjoint. The idea of dissociated random variables, which arises rather naturally in data analysis, was first studied by McGinley and Sibson(7). They proved a Strong Law of Large Numbers for dissociated random variables when their fourth moments are uniformly bounded. Silver man (8) extended the analysis of dissociated random variables by proving a Central Limit Theorem when the variables also satisfy certain symmetry relations. It is the aim of this paper to show that a Strong Law of Large Numbers (under more natural moment conditions), a Central Limit Theorem and in variance principle are consequences of the symmetry relations imposed by Silverman rather than the independence structure. To prove these results, reversed martingale techniques are employed and thus it is shown, in passing, how the well known Central Limit Theorem for U-statistics can be derived from the corresponding theorem for reversed martingales (as was conjectured by Loynes(6)).
The central limit theorem for ergodic stationary processes obtained by Gordin is shown to hold for general stationary processes. In this case, the limit law is a mixture of normals.
If T is a stopping time on a martingale {St}, the mth order moments of T and ST (for integers m ≧ 2) are related by an identity known as a Wald equation of order m. Wald equations hold under certain conditions, which are simplified in this paper by showing that among the set of previously known conditions, some are implied by the others.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.