Let
$\sigma $ ,
$\theta $ be commuting involutions of the connected semisimple algebraic group
$G$ where
$\sigma$ ,
$\theta $ and
$G$ are defined over an algebraically closed field
$\underset{\scriptscriptstyle-}{k},$ char
$\underline{k}$ =0. Let
$H:={{G}^{\sigma }}$ and
$K:={{G}^{\theta }}$ be the fixed point groups. We have an action
$\left( H\,\times \,K \right)\,\times \,G\,\to \,G$ , where
$\left( \left( h,\,k \right),\,g \right)\,\mapsto \,hg{{k}^{-1}},\,h\,\in \,H$ ,
$k\,\in \,K,g\,\in \,G$ . Let
$G\,//\,\left( H\,\times \,K \right)$ denote the categorical quotient Spec
$\mathcal{O}{{(G)}^{H\times K}}$ . We determine when this quotient is smooth. Our results are a generalization of those of Steinberg [Ste75], Pittie [Pit72] and Richardson [Ric82] in the symmetric case where
$\sigma \,=\,\theta $ and
$H\,=K$ .