We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Edited by
Alexandre Caron, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), France,Daniel Cornélis, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and Foundation François Sommer, France,Philippe Chardonnet, International Union for Conservation of Nature (IUCN) SSC Antelope Specialist Group,Herbert H. T. Prins, Wageningen Universiteit, The Netherlands
Much of the narrative for land clearing of wildlife is historic and frequently blames buffalo for livestock diseases, a dogma perpetrated throughout colonial history and inherited by emerging African states after decolonization. A review of this dogma indicates that the many significant problems for wildlife and cattle are related to introduced exotic livestock breeds that brought their diseases into Africa and the production and trade models that came with them. Reproducing European economic agricultural systems in Africa has failed in most African countries so far, challenging us to reconsider current agricultural economic development models in the context of human-induced global ecological changes, human relations to nature and our planetary limits. The next generation of African farmers, wildlife managers and policymakers have the opportunity to frame new coexistence and productive models between wildlife, including African buffalo, and livestock-based agriculture in the ecosystems in which they have coevolved.
Edited by
Alexandre Caron, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), France,Daniel Cornélis, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and Foundation François Sommer, France,Philippe Chardonnet, International Union for Conservation of Nature (IUCN) SSC Antelope Specialist Group,Herbert H. T. Prins, Wageningen Universiteit, The Netherlands
The current tribe Bovini may very well be polyphyletic. African buffalo might be descended from African Boselaphini, but the African fossil record before 8 Myr is quite poor. Palaeontological data tally well with nuclear DNA data showing that African buffalo and Asian buffalo separated some 8 Myr ago and are very distantly related. Cross-fertilization experiments and (failed) implantation tests of embryos of Asian Bovini into African buffalo wombs underscore the fact that these species are evolutionarily very distantly related. Karyotypic evolution of African buffalo is also very different from these Asian Bovini. This may warrant the establishment of a separate tribe for the African buffalo and its ancestors, namely, the Syncerini. Until recently there were two species of buffalo in Africa, Syncerus caffer and S. antiquus, which in some parts of their range coexisted. The ecology of the single surviving species of African buffalo may thus have been co-shaped by that recently extinct sister taxon. Because the present species is so distantly related to wild cattle and Asian buffalo, little or nothing can be learned from studying these species for the ecology or management of the African buffalo, even if much were known about these species in the wild (which is not the case).
Edited by
Alexandre Caron, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), France,Daniel Cornélis, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and Foundation François Sommer, France,Philippe Chardonnet, International Union for Conservation of Nature (IUCN) SSC Antelope Specialist Group,Herbert H. T. Prins, Wageningen Universiteit, The Netherlands
Edited by
Alexandre Caron, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), France,Daniel Cornélis, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and Foundation François Sommer, France,Philippe Chardonnet, International Union for Conservation of Nature (IUCN) SSC Antelope Specialist Group,Herbert H. T. Prins, Wageningen Universiteit, The Netherlands
Edited by
Alexandre Caron, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), France,Daniel Cornélis, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and Foundation François Sommer, France,Philippe Chardonnet, International Union for Conservation of Nature (IUCN) SSC Antelope Specialist Group,Herbert H. T. Prins, Wageningen Universiteit, The Netherlands
Edited by
Alexandre Caron, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), France,Daniel Cornélis, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and Foundation François Sommer, France,Philippe Chardonnet, International Union for Conservation of Nature (IUCN) SSC Antelope Specialist Group,Herbert H. T. Prins, Wageningen Universiteit, The Netherlands
Edited by
Alexandre Caron, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), France,Daniel Cornélis, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and Foundation François Sommer, France,Philippe Chardonnet, International Union for Conservation of Nature (IUCN) SSC Antelope Specialist Group,Herbert H. T. Prins, Wageningen Universiteit, The Netherlands
Predation, poaching, disease and drought all impact African buffalo population numbers. Droughts in particular have important implications for the trajectories of animal populations, especially in tropical savannas. This is due to the pulse-like occurrence of droughts at intervals within the average lifespan of a buffalo. Consequently, populations are always in a state of transition and the proportions of the population in each age group are continually changing. We show that in these circumstances attempts to determine maximum stocking rates are prone to error. Furthermore, applying aggregated age groups to models may result in misleading forecasts of population trends. We believe this also holds for the populations of other mammalian species that live under so-called non-equilibrium conditions because their dynamics are then event-driven and not governed by factors such as density dependency.
Edited by
Alexandre Caron, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), France,Daniel Cornélis, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and Foundation François Sommer, France,Philippe Chardonnet, International Union for Conservation of Nature (IUCN) SSC Antelope Specialist Group,Herbert H. T. Prins, Wageningen Universiteit, The Netherlands
This chapter presents the distribution, abundance patterns and trends of African buffalo in the 38 countries of its distribution area based on recent aerial and ground census data and feedback from field experts. For the period 2001–2021, we collected abundance data from 163 protected areas or complexes of protected areas and presence data from 711 localities. The savanna buffalo population is estimated in 2022 at over 564,000 individuals, after deduction of the 75,000 buffalo under intensive private management in South Africa. Its abundance is roughly equivalent to that estimated 25 years ago (625,000). The subspecies conservation status is highly unbalanced. The Cape buffalo is by far the most abundant, representing 90 per cent of the total estimated population (510,000 individuals). The West and Central subspecies respectively represent 4 and 6 per cent (>20,000 individuals and >34,000 individuals). The conservation status of the Central African savanna buffalo, whose abundance has been nearly halved over the last 25 years, is worrisome, with exception of the steadily increasing populations of Zakouma NP (Chad) and Garamba NP (DRC). Estimating the abundance of forest buffalo is challenging, as is establishing a trend. Our investigations showed that the forest buffalo is still well represented in Central Africa in areas with low human density. The forest buffalo’s most important stronghold in Central Africa is probably the Greater TRIDOM/TNS (Tri-National Dja-Odzala-Minkébé / Trinational Sangha), a vast contiguous block of mainly pristine moist forest covering 250,000 km2 and straddling Cameroon, Congo, Gabon and Central African Republic (11 per cent of the Central African forest block). In West Africa, we obtained very little information on the presence of the forest buffalo in the residual forest block, suggesting that the conservation status of the forest buffalo in this region is very worrisome.
Edited by
Alexandre Caron, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), France,Daniel Cornélis, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and Foundation François Sommer, France,Philippe Chardonnet, International Union for Conservation of Nature (IUCN) SSC Antelope Specialist Group,Herbert H. T. Prins, Wageningen Universiteit, The Netherlands
The African buffalo is one of the best-researched of all ungulate species even though it must give way to some North American deer species, an elephant-seal species and the red deer. The African buffalo had some monographs dedicated to it, but much new research has been carried out on the species since that time, which is brought up to date in the present volume. This allowed us to make an inventory of what we do not know yet about this important species. For that purpose, we made an inventory of research topics, or questions tabulated under three different knowledge domains, (i) ‘known unknowns’, (ii) ‘unknown unknowns’ and (iii) ‘unknown knowns’. The ‘known unknowns’ we categorized as those research questions sitting as it were in the backs of the minds of the current suite of African buffalo specialist; our inventory yielded 37 research issues. The ‘unknown knowns’, we portrayed as evidence-based scientific knowledge on buffalo that a current generation of scientists appear to have forgotten. This proved difficult, but three topics were identified. Here we also draw attention to the fact that modern scientists appear to ignore francophone literature, which is rather unfortunate as West and Central Africa are to a large extent francophone. Not using this repository of information may lead to knowledge decay. Finally, we share thoughts on the ‘unknown unknowns’, which we described as ‘knowledge once we have it will upset our present thinking, perhaps about African buffalo, perhaps on ecology evolution, or on aspects of the veterinary sciences’. Under this category, we touched on 15 issues, but perhaps our imagination was too limited. So, we share in total some 60-odd questions and ideas, and we hope that at least some of these questions or ideas will kindle someone’s imagination and drive to bring knowledge on this great species further.
Edited by
Alexandre Caron, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), France,Daniel Cornélis, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and Foundation François Sommer, France,Philippe Chardonnet, International Union for Conservation of Nature (IUCN) SSC Antelope Specialist Group,Herbert H. T. Prins, Wageningen Universiteit, The Netherlands
Edited by
Alexandre Caron, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), France,Daniel Cornélis, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and Foundation François Sommer, France,Philippe Chardonnet, International Union for Conservation of Nature (IUCN) SSC Antelope Specialist Group,Herbert H. T. Prins, Wageningen Universiteit, The Netherlands
Edited by
Alexandre Caron, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), France,Daniel Cornélis, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and Foundation François Sommer, France,Philippe Chardonnet, International Union for Conservation of Nature (IUCN) SSC Antelope Specialist Group,Herbert H. T. Prins, Wageningen Universiteit, The Netherlands
Edited by
Alexandre Caron, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), France,Daniel Cornélis, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and Foundation François Sommer, France,Philippe Chardonnet, International Union for Conservation of Nature (IUCN) SSC Antelope Specialist Group,Herbert H. T. Prins, Wageningen Universiteit, The Netherlands
Edited by
Alexandre Caron, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), France,Daniel Cornélis, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and Foundation François Sommer, France,Philippe Chardonnet, International Union for Conservation of Nature (IUCN) SSC Antelope Specialist Group,Herbert H. T. Prins, Wageningen Universiteit, The Netherlands
Based on genetics and ecology, it is best to discern three subspecies of African buffalo, namely the northern savanna buffalo, the Cape buffalo and the forest buffalo. In honour of the oldest written reference to the buffalo by the Syrian geographer Ibn Fadl Allah al-Umari in 1347 CE, we propose the name Syncerus caffer umarii for the northern savanna buffalo, and maintain S. c. caffer for the Cape buffalo and S. c. nanus for the forest buffalo. We think it likely that the forest buffalo is a recent form of buffalo (about 150 kyr), derived from the northern savanna buffalo in the eastern part of its range, which underwent dwarfing (i.e. miniaturization) in the rainforest. We propose that the northern savanna buffalo, because of the high amount of genetic exchange with the forest buffalo, has many hallmarks of a hybrid subspecies that expanded its range due to the creation of the Guinea savanna and Sudan savanna by Iron Age agriculturalists. The Cape buffalo shows the highest number of food web interactions with other large mammals, while the dwarfed forest buffalo is very lightly embedded in its trophic web.
One of iconic Africa's Big Five, the African buffalo is the largest African bovine or antelope that occurs throughout most of sub-Sahara and in a wide range of ecosystems from savanna to rainforest. The African buffalo is also one of the most successful large African mammals in terms of abundance and biomass. This species thus represents a powerful model to enhance our understanding of African biogeography and wildlife conservation, ecology and management. Edited by four researchers experienced in different aspects of the African buffalo's biology, this volume provides an exhaustive compilation of knowledge on an emblematic species that stands out as an important component of African natural and human ecosystems. It delivers a global view of the African buffalo and all known aspects of its ecology and management. This book will appeal to students, scholars, scientists and wildlife managers as well as those enthusiastic about the charismatic species. This title is also available as Open Access on Cambridge Core.
Birds migrating across the Himalayan region fly over the highest peaks in the world, facing immense physiological and climatic challenges. The authors show the different strategies used by birds to cope with these challenges. Many wetland avian species are seen in the high-altitude lakes of the Himalayas and the adjoining Tibetan Plateau, such as Bar-Headed Geese. Ringing programmes have generated information about origins and destinations, and this book is the first to present information on the bird's exact migratory paths. Capitalising on knowledge generated through satellite telemetry, the authors describe the migratory routes of a multitude of birds flying over or skirting the Himalayas. The myriad of threats to migratory birds and the wetland system in the Central Asian Flyway are discussed, with ways to mitigate them. This volume will inform and persuade policy-makers and conservation practitioners to take appropriate measures for the long-term survival of this unique migration.