We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with psychiatric disorders, including schizophrenia and bipolar disorder, are reported to suffer from sleep disorders.
Objective
To investigate the effects of lurasidone on sleep architecture in rats using sleep electroencephalography.
Methods
Seven adult male rats were used in this study. A pair of electrode wires was implanted in the dura of each rat and electromyograms were recorded from their dorsal neck muscles. Drugs were administered at the start of the lights-on period, and electroencephalograms (EEG)were recorded for 6 hours in individual soundproof boxes. The course of sleep in rats has been classified into 3 stages: WAKE, non-REM (NREM) sleep and rapid eye movement (REM) sleep. Total NREM duration, REM duration, and latencies to the initial REM and NREM were calculated. In addition, the number and mean duration of bouts in every 2-hour period were calculated in each stage. EEG power in each of the following frequency bands during NREM sleep was quantified: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-80 Hz).
Results
Lurasidone shortened REM sleep duration and prolonged the mean duration of one bout in WAKE and NREM sleep. Quantitative frequency analyses during NREM sleep revealed that lurasidone increases slow waves and decreases fast waves. The serotonin 5-HT1A receptor partial agonist, tandospirone, and selective serotonin 5-HT7 receptor antagonist, SB-258741, also exhibited REM-inhibitory effects similar to those of lurasidone.
Conclusion
These results suggest that lurasidone ameliorates sleep disorders associated with psychosis through, at least partly, serotonin 5-HT1A and serotonin 5-HT7 receptors.
We present ALMA detection of the [O iii] 88 μm line and 850 μm dust continuum emission in a Y-dropout Lyman break galaxy, MACS0416_Y1. The [O iii] detection confirms the object with a spectroscopic redshift to be z = 8.3118±0.0003. The 850 μm continuum intensity (0.14 mJy) implies a large dust mass on the order of 4×106M⊙. The ultraviolet-to-far infrared spectral energy distribution modeling, where the [O iii] emissivity model is incorporated, suggests the presence of a young (τage ≍ 4 Myr), star-forming (SFR ≍ 60M⊙yr−1), and moderately metal-polluted (Z ≍ 0.2Z⊙) stellar component with a stellar mass of 3 × 108M⊙. An analytic dust mass evolution model with a single episode of star formation does not reproduce the metallicity and dust mass in ≍ 4 Myr, suggesting an underlying evolved stellar component as the origin of the dust mass.
Europium LIII-edge X-ray absorption near-edge structure (XANES) was employed to determine the Eu(II)/Eu(III) ratios in minerals. This ratio can be determined based on the peak-area ratio of white lines, the resonance peak, in normalized XANES spectra for Eu(II) and Eu(III) species. For precise determination of the Eu(II)/Eu(III) ratios, however, it was revealed that the transition probabilities for each individual Eu(II) and Eu(III) species in the system must be quantified, because we found that the peak area in normalized XANES spectra is different in each Eu(II) and Eu(III) species. Despite this ambiguity, the method was applied to Eu in natural hydrothermal apatites (Eu = 39 and 64 ppm) and fluocerite (Eu = 282 ppm). The relationship between the Eu(II)/Eu(III) ratio in these hydrothermal minerals, and the distribution coefficients of Eu(II) and Eu(III) were discussed, taking into account Eu anomalies in their REE patterns. It is considered that by combining the Eu(II)/Eu(III) ratios determined by XANES and the degree of Eu anomaly in REE patterns, we can provide new information on the distribution of Eu(II) and Eu(III) in various geochemical studies.
The objective of this study was to assess the effectiveness of a catheter-related bloodstream infection (CR BSI) reduction programme and healthcare workers' compliance with recommendations. A 3-year surveillance programme of CR BSIs in all hospital settings was implemented. As part of the programme, there was a direct observation of insertion and maintenance of central venous catheters (CVCs) to determine performance. A total of 38 education courses were held over the study period and feedback reports with the results of surveillance and recommendations were delivered to healthcare workers every 6 months. A total of 6722 short-term CVCs were inserted in 4982 patients for 58 763 catheter-days. Improvements of compliance with hand hygiene was verified at the insertion (87·1–100%, P < 0·001) and maintenance (51·1–72·1%, P = 0·029) of CVCs; and the use of chlorhexidine for skin disinfection was implemented at insertion (35·7–65·4%, P < 0·001) and maintenance (33·3–45·9%, P < 0·197) of CVCs. There were 266 CR BSI incidents recorded with an annual incidence density of 5·75/1000 catheter-days in the first year, 4·38 in the second year [rate ratio (RR) 0·76, 95% confidence interval (CI) 0·57–1·01] and 3·46 in the third year (RR 0·60, 95% CI 0·44–0·81). The education programme clearly improved compliance with recommendations for CVC handling, and was effective in reducing the burden of CR BSIs.
An increasing number of transnasal endoscopic surgical procedures are being performed, and these procedures are now also utilised in the management of malignant sinonasal tumours. This study aimed to evaluate the outcome of endoscopic resection of sinonasal malignancies, with or without chemotherapy and radiotherapy.
Methods:
Between 2000 and 2009, six patients with sinonasal malignancies (diagnosed on pre-operative biopsy) underwent endoscopic resection at our hospital. The histopathological diagnoses varied and included squamous cell carcinoma, olfactory neuroblastoma, chordoma, extramedullary plasmacytoma and haemangiopericytoma.
Results:
Surgical resection was combined with chemotherapy and/or radiotherapy in four cases. The mean follow-up period was 43 months. One patient suffered local recurrence of chordoma, 84 months after the first operation, but this was successfully treated with proton beam radiotherapy.
Conclusion:
These results suggest that endoscopic resection may be a valid alternative to conventional resection in selected cases of malignant sinonasal tumour.
Key issues of heavy ion beam (HIB) inertial confinement fusion (ICF) include an efficient stable beam transport, beam focusing, uniform fuel pellet implosion, and so on. To realize a HIB fine focus on a fuel pellet, space-charge neutralization of incident focusing HIB is required at the HIB final transport just after a final focusing element in an HIB accelerator. In this article, an insulator annular tube guide is proposed at the final transport part, through which a HIB is transported. The physical mechanism of HIB charge neutralization based on an insulator annular guide is as follows: A local electric field created by HIB induces local discharges, and plasma is produced on the insulator inner surface. Then electrons are extracted from the plasma by the HIB net space charge. The electrons emitted neutralize the HIB space charge well.
Several promising new methods for amorphous silicon solar cell preparation involve high substrate temperatures and/or very reactive atmospheres. When incorporated into solar cells, the performance of these layers has often been less than expected due to enhanced diffusion and/or chemical reactions. This poor performance results from the harsh deposition environments. Deleterious effects include darken of TCO coated glass substrates due to hydrogen diffusion to and hydrogen reduction at the TCO interface when solar cells are prepared in the p-i-n deposition sequence. Alternatively, the deposition of TCO layers onto amorphous layers also involves rather harsh oxidizing conditions that have a deleterious effect on the top most amorphous silicon-based p-layers. Strategic use of blocking layers results in remarkably improved solar cell performance. A thin Cr layer (probably becoming Cr2O3) shows ability to improve the performance of both n-ip and p-i-n solar cells by inhibiting both O and H diffusion.
Low temperature (50-300°C) growth of polycrystalline silicon (poly-Si) by very high frequency (100MHz) glow-discharge plasma enhanced CVD using SiF4 and H2mixtures was studied. The poly-Si microstructure was strongly affected by the SiF4/H2 gas flow ratio. For example, either (220) or (400) preferentially oriented films were prepared by appropriate SiF4/H2 ratio selection. The addition of small SiH4 flows to the SiF4/H2 mixtures could be used to increase the growth rate while the SiF4/H2 continued to control the film structures such as preferential orientation. Highly crystalline films were grown at a growth rate of 0.52nm/s using SiF4/H2/SiH4 flow rates of 30/90/2.Osccm (respectively). However, at higher SiH4 flows amorphous films were deposited. Under the small SiF4/H2 ratio condition, highly crystallized poly-Si was grown at temperatures as low as 50°C. N/i/Pt Schottky diode solar cells were prepared using these poly-Si for both the n- and the i-layers. These solar cells exhibited good performance; for example, open circuit voltages over 0.32V. N-i-p solar cell results are very promising with 6.2% of conversion efficiency being achieved in the initial trials.
The role of hydrogen atoms in the formation process of hydrogenated microcrystalline silicon (μc-Si:H) by plasma enhanced chemical vapor deposition method has been investigated. Under the present conditions, the etching and the permeation of hydrogen atoms in the subsurface region do not cause the crystallization. The kinetics study of surface morphology and structure in the initial growth of μc-Si:H on an atomically flat substrate indicates that the onset thickness of island coalescence reduced under μc-Si:H formation condition. The results support the ‘surface diffusion model’ in which the surface diffusion of film precursors is enhanced by the sufficient hydrogen coverage of surface and by hydrogen atom recombination energy on the growing surface of the film.
Generally higher depositions temperatures are required to prepare solar cells with narrow band gap amorphous silicon intrinsic layers. High processing temperatures require that diffusion resistant substrates and doped layer materials be developed. In the case of p-i-n solar cells both a new Ga-doped ZnO and/or semi-transparent Cr over-coated standard commercially available TCO show increased resistance to high temperature processing and it is possible to prepare efficient solar cells on these substrates at temperatures over 280 C. In most amorphous silicon i-layer cases a-SiC:H p-layers offer better diffusion resistance than microcrystalline players. However, in the case of narrow band gap amorphous silicon prepared at high temperatures using the argon treatment process [2] micro-crystalline p-layers offer significantly improved solar cell performance. Another promising approach involves the n-i-p deposition sequence, however, this case too can suffer from diffusion related problems.
Amorphous silicon films and solar cell i-layers were prepared from dichlorosilane(DCS) by ECR- and VHF-CVD. The hydrogen content, the chlorine content and the band gap could be controlled by varying argon and hydrogen dilution. The interaction of energetic and reactive plasma species with substrates and other previously deposited layers was studied. DCS, ECR-CVD causes darkening of TCO substrates even when buffer layers and/or doped layers were previously deposited by RF-CVD. Therefore n-i-p solar cell structures were prepared on NiCr and subsequent p-i-n solar cells were prepared with VHF-CVD which did not causeTCO reduction or other reactions in previously deposited amorphous layers. Preliminary results indicate that the VHF-CVD solar cells are at least as stable as standard amorphous silicon solar cells.
Previously it was shown that high quality wide gap hydrogenated amorphous silicon material could be prepared by a layer-by-layer technique involving hydrogen chemical annealing. Using this wide gap material, high electric field, n-i-p diode devices were fabricated. Reverse bias dark current was suppressed by optimization of the n-layer doping level (250ppm) and the thickness (2000Å). Working vidicon type device were prepared, tested, and optimized by further reduction in the high reverse bias leakage current. Vidicon devices showed very promising performance; however, at the present stage of development some point defects were observable at the highest reverse bias voltages probed (∼-6×105 V/cm).
Hydrogenated amorphous silicon (a-Si:H) films were prepared by a layer-by-layer (LBL) argon treatment technique. Thin amorphous silicon layers are first deposited and then treated by Ar. Thick films are built up by repeatedly the process many times. By reducing the deposition rate during deposition time (T, sec), a-Si:H with the gaps narrower than 1·55eV were prepared at substrate temperature lower than 300°C. These narrow-gap films contained less than 2 at.% hydrogen and had rigid Si network. Also, these narrow gap films exhibited good light soaking stability.
A patient (64-year-old, male) with familial cholinesterasemia caused by BChE deficiency was studied. DNA sequence analysis of all exons identified a point mutation, an A→G transition at codon 128, resulting in a Tyr→Cys substitution. The propositus showed extremely low BChE activity, but his other family members (three individuals) showed from intermediate to normal BChE activity. An immunological method revealed the absence of BChE protein in serum of the propositus. Both PCR primer introduced restriction analysis (PCR-PIRA) and sequence analysis revealed all three family members to be heterozygotes for this mutation.
Silicon thin films were prepared by “Chemical Annealing” where the deposition of thin layer (<3 nm thick) by RF glow discharge of SiH4 and the treatment with hydrogen atoms (H) or triplet state of argon (3Ar) were repeated alternatating. Consequently, wide gap a-Si:H with the gap of 2.1 eV was made by H-treatmentat rather low substrate temperature (Ts<150 °C), while a-Si:H with the gap narrower than 1.6 eV was obtained by the treatment with 3Ar at high Ts (>300 °C), resulting from the release of excessive hydrogen. Both the wider or the narrower gap films exhibited low defect density lower than 1016 cm−3 and obvious improvements in the stability for light soaking.
Polycrystalline silicon thin films were grown on glass by two-steps, i.e., deposition of seeds on glass (1) and growth epitaxy-like on the seeds (2). For the growth of seeds, the surface reaction was intentionally enhanced by impingment of atomic hydrogen at rather high temperature (450 °C). Strongly textured polycrystalline Si exhibiting (220) preferential orientation was grown epitaxy-like on the seeds.
Hydrogenated amorphous silicon (a-Si:H) with a gaps narrower than 1.7 eV were made by repeating the deposition of a thin layer (1–3 nm thick) and the treatment of growing surface with a mixture of H and Ar*. Crystallization induced by permeation of hydrogen into the subsurface at high substrate temperature (>200C) was efficiently prevented by treating with a mixture of H and Ar*. The activation of growing surface may arise from releasing a part of hydrogen on surface by treating with Ar*. High quality a-Si:H films containing hydrogen of 3 atom % with a gap of 1.6 eV were made by chemical annealing with a mixture of H and Ar*.
High quality wide gap hydrogenated amorphous silicon has been prepared using the chemical annealing technique. It was possible to prepare materials with band gaps ranging 1.8 to 2.1 eV by varying the preparation parameters. Low defect densities less than (3–8) x 1015 cm-3 could be maintained over the entire band gap range. Improved stability for light soaking was also observed in the wide gap materials.
High quality polycrystalline silicon was made on glass from fluorinated precursors by two step growth, i.e., (1) formation of seed crystals on glass by layer-by-layer(LL) technique and (2) grain-growth on the seeds. In LL technique, deposition of ultra-thin films and treatment with atomic hydrogen was repeated alternately. Columnar grains with 200 nm dia were grown epitaxy-like on the seeds by optimizing the deposition parameters under in situ observation with spectroscopic ellipsometry.
High quality a-Si:H thin films with varied optical gaps in the range from 1.55 to 2.1 eV were fabricated by various methods, i.e., the standard RF glow discharge of silane, “Chemical Annealing” and ECR-H-plasma from SiCl2H2 under in situ monitoring with an ellipsome try. Despite marked differences in the local structure, all these films showed low defect density as low as (3–5) × 1015 cm3. In addition, the stability for light soaking was improved markedly for the films made by promoting intensively structural relaxation with atomic hydrogen.