We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The pathogenesis of schizophrenia is multidimensional and intensively studied. The gut–brain axis disturbances might play a significant role in the development of schizophrenia.
Methods:
We compared the gut microbiota of 53 individuals with schizophrenia and 58 healthy controls, using the 16S rRNA sequencing method. Individuals with schizophrenia were assessed using the following scales: the Positive and Negative Syndrome Scale, the Calgary Depression Scale for Schizophrenia, the Social and Occupational Functioning Assessment Scale and the Repeatable Battery for the Assessment of Neuropsychological Status.
Results:
No significant between-group differences in α-diversity measures were observed. Increased abundance of Lactobacillales (order level), Bacilli (class level) and Actinobacteriota (phylum level) were found in individuals with schizophrenia regardless of potential confounding factors, and using two independent analytical approaches (the distance-based redundancy analysis and the generalised linear model analysis). Additionally, significant correlations between various bacterial taxa (the Bacteroidia class, the Actinobacteriota phylum, the Bacteroidota phylum, the Coriobacteriales order and the Coriobacteria class) and clinical manifestation (the severity of negative symptoms, performance of language abilities, social and occupational functioning) were observed.
Conclusions:
The present study indicates that gut microbiota alterations are present in European patients with schizophrenia. The abundance of certain bacterial taxa might be associated with the severity of negative symptoms, cognitive performance and general functioning. Nonetheless, additional studies are needed before the translation of our results into clinical practice.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.