We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
A meadow is a commutative ring with an inverse operator satisfying 0−1 = 0. We determine the initial algebra of the meadows of characteristic 0 and prove a normal form theorem for it. As an immediate consequence we obtain the decidability of the closed term problem for meadows and the computability of their initial object.
Abstract. Threads as contained in a thread algebra emerge from the behavioral abstraction from programs in an appropriate program algebra. Threads may make use of services such as stacks, and a thread using a single stack is called a pushdown thread. Equivalence of pushdown threads is decidable. Using this decidability result, an alternative to Cohen's impossibility result on virus detection is discussed and some results on risk assessment services are proved.
We give a negative answer to the question of whether every partial combinatory algebra can be completed. The explicit counterexample will be an intricately constructed term model. The construction and the proof that it works depend heavily on syntactic techniques. In particular, it provides a nice example of reasoning with elementary diagrams and descendants. We also include a domain-theoretic proof of the existence of an incompletable partial combinatory algebra.
Email your librarian or administrator to recommend adding this to your organisation's collection.