We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a sequence of independent identically distributed random variables, we derive a moving-maximum sequence (with random translations). The extremal index of the derived sequence is computed and the limiting behaviour of clusters of high values is studied. We are then given two or more independent stationary sequences whose extremal indices are known. We derive a new stationary sequence by taking either a pointwise maximum or by a mixture of the original sequences. In each case, we compute the extremal index of the derived sequence.
Records from are analyzed, where {Yj} is an independent sequence of random variables. Each Yj has a continuous distribution function Fj = Fλj for some distribution F and some λ j > 0. We study records, record times and related quantities for this sequence. Depending on the sequence of powers , a wide spectrum of behaviour is exhibited.
We consider the relative error of a tail function when this is approximated by y–α using an estimator of Hill's for α. The results combine recent work of Davis and Resnick on tail estimation with Anderson's work on large deviations in extreme-value theory. Treating separately the domains of attraction of Φα and Λ, we obtain general conditions for the relative error to tend to 0 as u →∞, y → ∞ simultaneously. The results serve as warning against the automatic extrapolation of estimates based on extreme-value approximations.
Let be the kth largest among Xn1, …, Xn[nt], where Xni = (Xi – an)/bn, {Xi} is a sequence of independent random variables and bn > 0 and an are norming constants. Suppose that for each converges in distribution. Then all the finite-dimensional laws of converge. The limiting process is represented in terms of a non-homogeneous two-dimensional Poisson process.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.