A solution has been found for the transient behaviour of resonant growing standing waves by using a perturbation expansion. Comparison with laboratory experiments as well as a numerical nonlinear solution of the same problem leads to the conclusion that: (i) the transient behaviour and the nonlinear tendency of the standing waves are described well by the analytic expression; (ii) the numerical results describe the solution very well until the wave starts to break; (iii) from the laboratory experiments and the numerical results, the standing internal gravity waves break owing to local gravitational instability at a critical amplitude which is similar to the one predicted by the expansion theory; (iv) the critical amplitude seems to be the maximum amplitude that a wave can reach; (v) when the generation of turbulence is violent, the small eddies begin forcing a secondary flow characterized by layers of strong jets separated by patches of turbulence.