We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Isolated, undamped geodesic-acoustic-mode (GAM) packets have been demonstrated to obey a (focusing) nonlinear Schrödinger equation (NLSE) (E. Poli, Phys. Plasmas, 2021). This equation predicts susceptibility of GAM packets to the modulational instability (MI). The necessary conditions for this instability are analysed analytically and numerically using the NLSE model. The predictions of the NLSE are compared with gyrokinetic simulations performed with the global particle-in-cell code ORB5, where GAM packets are created from initial perturbations of the axisymmetric radial electric field $E_r$. An instability of the GAM packets with respect to modulations is observed both in cases in which an initial perturbation is imposed and when the instability develops spontaneously. However, significant differences in the dynamics of the small scales are discerned between the NLSE and gyrokinetic simulations. These discrepancies are mainly due to the radial dependence of the strength of the nonlinear term, which we do not retain in the solution of the NLSE, and to the damping of higher radial spectral components $k_r$. The damping of the high-$k_r$ components, which develop as a consequence of the nonlinearity, can be understood in terms of Landau damping. The influence of the ion Larmor radius $\rho _i$ as well as the perturbation wavevector $k_\text {pert}$ on this effect is studied. For the parameters considered here the aforementioned damping mechanism hinders the MI process significantly from developing to its full extent and is strong enough to stabilize some of the (according to the undamped NLSE model) unstable wavevectors.
Nonlinear simulations of Alfvén modes (AMs) driven by energetic particles (EPs) in the presence of turbulence are performed with the gyrokinetic particle-in-cell code ORB5. The AMs carry a heat flux, and consequently they nonlinearly modify the plasma temperature profiles. The isolated effect of this modification on the dynamics of turbulence is studied by means of electrostatic simulations. We find that turbulence is reduced when the profiles relaxed by the AM are used, with respect to the simulation where the unperturbed profiles are used. This is an example of indirect interaction of EPs and turbulence. First, an analytic magnetic equilibrium with circular concentric flux surfaces is considered as a simplified example for this study. Then, an application to an experimentally relevant case of ASDEX Upgrade is discussed.
In this work, we revisit the linear gyro-kinetic theory of geodesic acoustic modes (GAMs) and derive a general dispersion relation for an arbitrary equilibrium distribution function of ions. A bi-Maxwellian distribution of ions is then used to study the effects of ion temperature anisotropy on GAM frequency and growth rate. We find that ion temperature anisotropy yields sensible modifications to both the GAM frequency and growth rate as both tend to increase with anisotropy and these results are strongly affected by the electron to ion temperature ratio.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.