We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Converging evidences from eye movement experiments indicate that linguistic contexts influence reading strategies. However, the question of whether different linguistic contexts modulate eye movements during reading in the same bilingual individuals remains unresolved. We examined reading strategies in a transparent (German) and an opaque (French) language of early, highly proficient French–German bilinguals: participants read aloud isolated French and German words and pseudo-words while the First Fixation Location (FFL), its duration and latency were measured. Since transparent linguistic contexts and pseudo-words would favour a direct grapheme/phoneme conversion, the reading strategy should be more local for German than for French words (FFL closer to the beginning) and no difference is expected in pseudo-words’ FFL between contexts. Our results confirm these hypotheses, providing the first evidence that the same individuals engage different reading strategy depending on language opacity, suggesting that a given brain process can be modulated by a given context.
The migration of oligodendrocyte precursor cells (OPCs) is modulated by secreted molecules in their environment and by cell–cell and matrix–cell interactions. Here, we ask whether membrane-anchored guidance cues, such as the ephrin ligands and their Eph receptors, participate in the control of OPC migration in the optic nerve. We postulate that EphA and EphB receptors, which are expressed on axons of retinal ganglion cells, interact with ephrins on the surface of OPCs. We show the expression of ephrinA5, ephrinB 2 and ephrinB3 in the migrating OPCs of the optic nerve as well as in the diencephalic sites from where they originate. In addition, we demonstrate that coated EphB2-Fc receptors, which are specific for ephrinB2/B3 ligands, induce dramatic changes in the contact and migratory properties of OPCs, indicating that axonal EphB receptors activate ephrinB signaling in OPCs. Based on these findings, we propose that OPCs are characterized by an ephrin code, and that Eph–ephrin interactions between axons and OPCs control the distribution of OPCs in the optic axonal tracts, and the progress and arrest of their migration.
Email your librarian or administrator to recommend adding this to your organisation's collection.