We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a continuous and isometric action of a Polish group G on an adequate Polish topometric space $(X,\tau ,\rho )$ and $x \in X$, we find a necessary and sufficient condition for $\overline {Gx}^{\rho }$ to be co-meagre; we also obtain a criterion that characterizes when such a point exists. This work completes a criterion established in earlier work of the authors.
Given a dynamical simplex K on a Cantor space X, we consider the set $G_K^*$ of all homeomorphisms of X which preserve all elements of K and have no non-trivial clopen invariant subset. Generalizing a theorem of Yingst, we prove that for a generic element g of $G_K^*$ the set of invariant measures of g is equal to K. We also investigate when there exists a generic conjugacy class in $G_K^*$ and prove that this happens exactly when K has only one element, which is the unique invariant measure associated to some odometer; and that in that case the conjugacy class of this odometer is generic in $G_K^*$.
We simplify a criterion (due to Ibarlucía and the author) which characterizes dynamical simplices, that is, sets $K$ of probability measures on a Cantor space $X$ for which there exists a minimal homeomorphism of $X$ whose set of invariant measures coincides with $K$. We then point out that this criterion is related to Fraïssé theory, and use that connection to provide a new proof of Downarowicz’ theorem stating that any non-empty metrizable Choquet simplex is affinely homeomorphic to a dynamical simplex. The construction enables us to prove that there exist minimal homeomorphisms of a Cantor space which are speedup equivalent but not orbit equivalent, answering a question of Ash.
We develop the basics of an analogue of descriptive set theory for functions on a Polish space X. We use this to define a version of the small index property in the context of Polish topometric groups, and show that Polish topometric groups with ample generics have this property. We also extend classical theorems of Effros and Hausdorff to the topometric context.
We study full groups of minimal actions of countable groups by homeomorphisms on a Cantor space $X$, showing that these groups do not admit a compatible Polish group topology and, in the case of $\mathbb{Z}$-actions, are coanalytic non-Borel inside $\text{Homeo}(X)$. We point out that the full group of a minimal homeomorphism is topologically simple. We also study some properties of the closure of the full group of a minimal homeomorphism inside $\text{Homeo}(X)$.
We reformulate, in the context of continuous logic, an oscillation theorem proved by G. Hjorth and give a proof of the theorem in that setting which is similar to, but simpler than, Hjorth's original one. The point of view presented here clarifies the relation between Hjorth's theorem and first-order logic.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.