We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\gamma(G)$ and $${\gamma _ \circ }(G)$$ denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if G is an n-vertex graph of minimum degree at least d, then
$$\begin{equation}\gamma(G) \leq \frac{n}{d}(\log d + 1).\end{equation}$$
In this paper the main result is that if G is any n-vertex d-regular graph of girth at least five, then
$$\begin{equation}\gamma_(G) \leq \frac{n}{d}(\log d + c)\end{equation}$$
for some constant c independent of d. This result is sharp in the sense that as $d \rightarrow \infty$, almost all d-regular n-vertex graphs G of girth at least five have
Furthermore, if G is a disjoint union of ${n}/{(2d)}$ complete bipartite graphs $K_{d,d}$, then ${\gamma_\circ}(G) = \frac{n}{2}$. We also prove that there are n-vertex graphs G of minimum degree d and whose maximum degree grows not much faster than d log d such that ${\gamma_\circ}(G) \sim {n}/{2}$ as $d \rightarrow \infty$. Therefore both the girth and regularity conditions are required for the main result.
An ordered hypergraph is a hypergraph whose vertex set is linearly ordered, and a convex geometric hypergraph is a hypergraph whose vertex set is cyclically ordered. Extremal problems for ordered and convex geometric graphs have a rich history with applications to a variety of problems in combinatorial geometry. In this paper, we consider analogous extremal problems for uniform hypergraphs, and determine the order of magnitude of the extremal function for various ordered and convex geometric paths and matchings. Our results generalize earlier works of Braß–Károlyi–Valtr, Capoyleas–Pach, and Aronov–Dujmovič–Morin–Ooms-da Silveira. We also provide a new variation of the Erdős-Ko-Rado theorem in the ordered setting.
A partial Steiner (n,r,l)-system is an r-uniform hypergraph on n vertices in which every set of l vertices is contained in at most one edge. A partial Steiner (n,r,l)-system is complete if every set of l vertices is contained in exactly one edge. In a hypergraph , the independence number α() denotes the maximum size of a set of vertices in containing no edge. In this article we prove the following. Given integers r,l such that r ≥ 2l − 1 ≥ 3, we prove that there exists a partial Steiner (n,r,l)-system such that
This improves earlier results of Phelps and Rödl, and Rödl and Ŝinajová. We conjecture that it is best possible as it matches the independence number of a random r-uniform hypergraph of the same density. If l = 2 or l = 3, then for infinitely many r the partial Steiner systems constructed are complete for infinitely many n.
For a fixed graph $H$, we define the rainbow Turán number $\ex^*(n,H)$ to be the maximum number of edges in a graph on $n$ vertices that has a proper edge-colouring with no rainbow $H$. Recall that the (ordinary) Turán number $\ex(n,H)$ is the maximum number of edges in a graph on $n$ vertices that does not contain a copy of $H$. For any non-bipartite $H$ we show that $\ex^*(n,H)=(1+o(1))\ex(n,H)$, and if $H$ is colour-critical we show that $\ex^{*}(n,H)=\ex(n,H)$. When $H$ is the complete bipartite graph $K_{s,t}$ with $s \leq t$ we show $\ex^*(n,K_{s,t}) = O(n^{2-1/s})$, which matches the known bounds for $\ex(n,K_{s,t})$ up to a constant. We also study the rainbow Turán problem for even cycles, and in particular prove the bound $\ex^*(n,C_6) = O(n^{4/3})$, which is of the correct order of magnitude.
The question of the maximum number $\mbox{ex}(m,n,C_{2k})$ of edges in an m by n bipartite graph without a cycle of length 2k is addressed in this note. For each $k \geq 2$, it is shown that $\mbox{ex}(m,n,C_{2k}) \leq \begin{cases} (2k-3)\bigl[(mn)^{\frac{k+1}{2k}} + m + n\bigr] & \mbox{ if }k \mbox{ is odd,}\\[2pt] (2k-3)\bigl[m^{\frac{k+2}{2k}}\, n^{\frac{1}{2}} + m + n\bigr] & \mbox{ if }k \mbox{ is even.}\\ \end{cases}$
Häggkvist and Scott asked whether one can find a quadratic function q(k) such that, if G is a graph of minimum degree at least q(k), then G contains vertex-disjoint cycles of k consecutive even lengths. In this paper, it is shown that if G is a graph of average degree at least k2+19k+10 with sufficiently many vertices, then G contains vertex-disjoint cycles of k consecutive even lengths, answering the above question in the affirmative. The coefficient of k2 cannot be decreased and, in this sense, this result is best possible.
A question recently posed by Häggkvist and Scott asked whether or not there exists a constant c such that, if G is a graph of minimum degree ck, then G contains cycles of k consecutive even lengths. In this paper we answer the question by proving that, for k > 2, a bipartite graph of average degree at least 4k and girth g contains cycles of (g/2 − 1)k consecutive even lengths. We also obtain a short proof of the theorem of Bondy and Simonovits, that a graph of order n and size at least 8(k − 1)n1+1/k has a cycle of length 2k.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.